The Protein Journal

, Volume 26, Issue 8, pp 533–540 | Cite as

Structural and Biological Characterization of Two Crotamine Isoforms IV-2 and IV-3 Isolated from the Crotalus durissus cumanensis Venom

  • Luis Alberto Ponce-Soto
  • Daniel Martins
  • José Camillo Novello
  • Sergio Marangoni
Article

Abstract

In this work, we isolated the two new crotamine isoforms from the Crotalus durissus cumanensis rattlesnake venom and its “in vitro” neurotoxic, myotoxic and lethality (DL50) intracerebroventricular (i.c.v.) effects were characterized. These proteins were named IV-2 and IV-3 and were purified by combination of two chromatographic steps on molecular exclusion chromatography on Superdex 75 and reverse phase HPLC (μ-Bondapack C18). The molecular mass of the crotamine isoforms was 4905.96 Da for isoform IV-2 and 4956.97 Da for IV-3 and, as determined by mass spectrometry, and both contained six Cys residues. Enzymatic hydrolysis followed by de novo sequencing by tandem mass spectrometry was used to determine the primary structure of both isoforms. The positions of five sequenced tryptic peptides, including the N-terminal of the isoform IV-2 and four from isoform IV-3 were deduced by comparison with a homologous protein from the crotamine family. The isoforms IV-2 and IV-3 had a sequence of amino acids of 42 amino acid residues IV-2: YKRCHIKGGH CFPKEKLICI PPSSDIGKMD CPWKRKCCKK RS and pI value 9.54 and IV-3: YKQCHKKGGH CFPKEVLICI PPSSDFGKMD CRWKRKCCKK RS with a pI value of 9.54. This protein showed high molecular amino acid sequence identity with other crotamine-like proteins from Crotalus durissus terrificus. These new crotamine isoforms induced potent blockade of neuromuscular transmission in young chicken biventer cervicis preparation and potent myotoxic effect. In mice, both isoforms induced myonecrosis, upon intramuscular or subcutaneous injections. These activities were modulated by the presence of positively charged amino acid residues. The LD50 of isoform IV-2 was 0.07 mg/kg and isoform IV-3 was 0.06 mg/kg the animal weight, by i.c.v. route.

Keywords

Crotalus durissus cumanensis Crotamine Neurotoxin “in vitro” Myotoxin HPLC Mass spectrometry 

Abbreviations

HPLC-FR

High performance liquid chromatograph reverse phase

IV-2 (MYX 2_CROCu) and IV-3 (MYX3_CROCu)

Isoforms of PLA2

μ-Bondapack C-18

Column HPLC with 18 carbons

Da

Dalton

MS spectral profiles

Mass spectrometric spectral profiles

LD50 i.c.v.

Lethal dose intracerebroventricular

Q-TOF Ultima, Micromass

Quadruple time-of-flight

ESI-MS/MS

Electrospray ionization tandem mass spectrometry

SBPM

Small basic polypeptide myotoxins

CK

The plasma creatine kinase

PBS

Phosphate basic sodium buffer

References

  1. 1.
    Campbell JA, Lamar WW (1989) Comstock Publishing Associates, New York, pp 330–346Google Scholar
  2. 2.
    Chippaux JP, Williams V, White J (1991) Toxicon 29:1279–1303CrossRefGoogle Scholar
  3. 3.
    Francischetti IM, Gombarovits ME, Valenzuela JG, Carlini CR, Guimaraes JA (2000) Comp Biochem Physiol C Toxicol Pharmacol 127:23–36Google Scholar
  4. 4.
    Saravia P, Rojas E, Arce V, Guevara C, Lopez JC, Chaves E, Velásquez R, Rojas G, Gutierrez JM (2002) Rev Biol Trop 50:337–346Google Scholar
  5. 5.
    Dos-Santos MC, Assis EB, Moreira TD, Pinheiro J, Fortes-Dias CL (2005) Toxicon 46:958–961CrossRefGoogle Scholar
  6. 6.
    Vellard J (1939) C R Seances Acad Sci 130:463–464Google Scholar
  7. 7.
    Salazar AM, Rodríguez-Acosta A, Girón ME, Aguilar I, Guerrero B (2007) Thromb Res 120(1):95–104CrossRefGoogle Scholar
  8. 8.
    Daltry JC, Wuster W, Thorpe RS (1996) Nature 379:537–540CrossRefGoogle Scholar
  9. 9.
    Pifano F, Rodriguez-Acosta A (1996) Brenesia 45–46:169–175Google Scholar
  10. 10.
    Pifano F, Rodríguez-Acosta A, Mondolfi A (1989) Universidad Central de Venezuela, pp 1–36Google Scholar
  11. 11.
    Rodríguez-Acosta A, Mondolfi A, Orihuela A, Aguilar M (1995) Editorial Venediciones; pp 1–106Google Scholar
  12. 12.
    Barraviera B (1994) Rev Inst Med Trop São Paulo 36:479Google Scholar
  13. 13.
    Barraviera B, Lomonte B, Tarkowski A, Hanson LA, Meira DA. (1995) J Venom Anim Toxins 1:11–22Google Scholar
  14. 14.
    Fonseca MG (2001) J Venom Anim Toxins 7:146–147CrossRefGoogle Scholar
  15. 15.
    Rodríguez-Acosta A, Aguilar I, Girón M, Rodríguez-Pulido V (1998) Nat Toxins 6:15–18CrossRefGoogle Scholar
  16. 16.
    Gonçalves JM (eds) (1956) Venoms, American Association for the Advancement of Science, Washington, DC, pp 261–274Google Scholar
  17. 17.
    Schenberg S (1959) Science 129:1361–1363CrossRefGoogle Scholar
  18. 18.
    Bober MA, Glenn JL, Straight RC, Ownby CL (1988) Toxicon 26(7):665–673CrossRefGoogle Scholar
  19. 19.
    Ownby C (1998) J Toxicol Toxin Rev 17:213–238Google Scholar
  20. 20.
    Gonçalves JM, Arantes EG (1956) An Acad Bras Cienc 28:369–371Google Scholar
  21. 21.
    Oguiura N, Camargo ME, da Silva ARP, Horton DSPQ (2000) Toxicon 38:443–448CrossRefGoogle Scholar
  22. 22.
    Samejima Y, Aoki Y, Mebs D (1991) Toxicon 29:461–468CrossRefGoogle Scholar
  23. 23.
    Gutiérrez JM, Lomonte B, Cháves F, Moreno E, Cerdas L (1986) Comp Biochem Physiol 84C:159–164Google Scholar
  24. 24.
    World Health Organization (1981) Progress in the Characterization of Venoms and Standarization of Antivenoms. WHO offset publication No. 58, GenevaGoogle Scholar
  25. 25.
    Smith LA, Schmidt JJ (1990) Toxicon 28:575–585CrossRefGoogle Scholar
  26. 26.
    Rádis-Baptista G, Oguiura N, Hayashi MAF, Camargo ME, Grego KF, Oliveira EB, Yamane T (1999) Toxicon 37:973–984CrossRefGoogle Scholar
  27. 27.
    Griffin PR, Aird SD (1990) FEBS Lett 274(12):43–47CrossRefGoogle Scholar
  28. 28.
    Maeda N, Tamiya N, Pattabhiraman TR, Russel FE (1978) Toxicon 16:431–441CrossRefGoogle Scholar
  29. 29.
    Yoshida-Kanashiro E, Navarrete LF, Rodriguez-Acosta A (2003) Rev Cubana Med Trop 55(1):38–40Google Scholar
  30. 30.
    Mancin AC, Soares AM, Adrião-Escarso SH, Faca VM, Greene LJ, Zuccolotto S, Pela IR, Giglio JR (1998) Toxicon 36:1927–1937CrossRefGoogle Scholar
  31. 31.
    Faure G, Bon C (1988) Biochemistry 27(2):730–738CrossRefGoogle Scholar
  32. 32.
    Laure CJ (1975) Hoppe-Seyler’s Z Physiol Chem 356:213–215Google Scholar
  33. 33.
    Santos MC, dos Morhy L, Ferreira LCL, Oliveira EB (1993) Toxicon 31:166CrossRefGoogle Scholar
  34. 34.
    Chang CC, Hong SJ, Su MJ (1983) Br J Pharmacol 79:673–680Google Scholar
  35. 35.
    Pellegrini Filho A, Vital-Brazil O, Fontana MD, Laure CJ (1978) Toxins: Animal, plants and microbial. Pergamon Press, Oxford, pp 375–382Google Scholar
  36. 36.
    Tsai MC, Peng IS, Chang CC (1981) Proc Natl Sci Council Repub China B5:307–313Google Scholar
  37. 37.
    Menez A (1998) Toxicon 36(11):1557–1572CrossRefGoogle Scholar
  38. 38.
    Mouhat S, Jouirou B, Mosbah A, De Waard M, Sabatier JM (2004) Biochem J 378:717–726CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Luis Alberto Ponce-Soto
    • 1
  • Daniel Martins
    • 1
  • José Camillo Novello
    • 1
  • Sergio Marangoni
    • 1
  1. 1.Departamento de Bioquímica, Instituto de Biologia (IB)Universidade Estadual de Campinas (UNICAMP) CampinasBrasil

Personalised recommendations