The Protein Journal

, Volume 26, Issue 7, pp 517–521

The Role of Phe181 in the Hexamerization of Helicobacter pylori Quinolinate Phosphoribosyltransferase

Article

Abstract

Quinolinic acid phosphoribosyltransferase (QAPRTase; NadC) catalyzes an indispensable step in NAD biosynthesis, one that is essential for cell survival in prokaryotes, which makes it an attractive target for antibacterial drug therapy. We recently reported the crystal structures of Helicobacter pylori QAPRTase with bound quinolinic acid, nicotinamide mononucleotide, and phthalic acid. The enzyme exists as a hexamer organized as a trimer of dimers, which is essential for full enzymatic activity. The loop between helix α7 and strand β8 contributes significantly to the hydrophobic dimer-dimer interactions. Phe181Pro mutation within the α7-β8 loop disrupts the hexamerization of QAPRTase, and the resultant dimer shows dramatically reduced protein stability and no activity. Our findings thus suggest that compounds able to disrupt its proper oligomerization could potentially function as selective inhibitors of Helicobacter pylori QAPRTase and represent a novel set of antibacterial agents.

Keywords

Quinolinate phosphoribosyltransferase Hexamerization Drug target Helicobacter pylori 

Abbreviations

QAPRTase

Quinolinate phosphoribosyltransferase

NAD

Nicotinamide adenine dinucleotide

QA

Quinolinic acid

PRPP

5-Phosphoribosyl-1-pyrophosphate

NAMN

Nicotinic acid mononucleotide

PncB

Nicotinate phosphoribosyltransferase

References

  1. 1.
    Foster JW, Moat AG (1980) Microbiol Rev 44:83–105Google Scholar
  2. 2.
    Eads JC, Ozturk D, Wexler TB, Grubmeyer C, Sacchettini JC (1997) Structure 5:47–58CrossRefGoogle Scholar
  3. 3.
    Sharma V, Grubmeyer C, Sacchettini JC (1998) Structure 6:1587–1599CrossRefGoogle Scholar
  4. 4.
    Hughes KT, Dessen A, Gray JP, Grubmeyer C (1993) J Bacteriol 175:479–486Google Scholar
  5. 5.
    Iwai K, Taguchi H (1974) Biochem Biophys Res Commun 56:884–891CrossRefGoogle Scholar
  6. 6.
    Mann DF, Byerrum RU (1974) J Biol Chem 249:6817–6823Google Scholar
  7. 7.
    Okuno E, Schwarcz R (1985) Biochim Biophys Acta 841:112–119Google Scholar
  8. 8.
    Okuno E, White RJ, Schwarcz R (1988) J Biochem (Tokyo) 103:1054–1059Google Scholar
  9. 9.
    Packman PM, Jakoby WB (1967) J Biol Chem 242:2075–2079Google Scholar
  10. 10.
    Schwarzenbacher R, Jaroszewski L, von Delft F, Abdubek P, Ambing E, Biorac T, Brinen LS, Canaves JM, Cambell J, Chiu HJ et al (2004) Proteins 55:768–771CrossRefGoogle Scholar
  11. 11.
    Kim MK, Im YJ, Lee JH, Eom SH (2006) Proteins 63:252–255CrossRefGoogle Scholar
  12. 12.
    Miroux B, Walker JE (1996) J Mol Biol 260:289–298CrossRefGoogle Scholar
  13. 13.
    Cao H, Pietrak BL, Grubmeyer C (2002) Biochemistry 41:3520–3528CrossRefGoogle Scholar
  14. 14.
    Cleland WW (1979) Methods Enzymol 63:103–138CrossRefGoogle Scholar
  15. 15.
    DeLano WL (2002) The PyMOL user’s manual. DeLano Scientific, San Carlos, CAGoogle Scholar
  16. 16.
    Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Proc Natl Acad Sci USA 98:10037–10041CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M.-K. Kim
    • 1
  • G. B. Kang
    • 1
  • W. K. Song
    • 1
  • S. H. Eom
    • 1
  1. 1.Department of Life ScienceGwangju Institute of Science & TechnologyGwangjuRepublic of Korea

Personalised recommendations