The Protein Journal

, Volume 26, Issue 5, pp 335–348 | Cite as

Biochemical Characterization of a S-glutathionylated Carbonic Anhydrase Isolated from Gills of the Antarctic Icefish Chionodraco hamatus

  • Antonia Rizzello
  • M. Antonietta Ciardiello
  • Raffaele Acierno
  • Vito Carratore
  • Tiziano Verri
  • Guido di Prisco
  • Carlo Storelli
  • Michele Maffia

Gill cytoplasmic carbonic anhydrase of the haemoglobinless Antarctic icefish Chionodraco hamatus (Ice-CA) was directly sequenced and consists in 259 residues with an acetylated N-terminus. The molecular mass, deduced from the sequence, was 28.45 kDa, while mass spectrometry analysis of the native protein gave higher values. Treatment with dithiothreitol abolished this difference, indicating possible post-translational modifications. Isoelectric focusing analysis of Ice-CA suggested S-thiolation, which was identified as S-glutathionylation by immunostaining. Deglutathionylated Ice-CA maintained the anhydrase activity but showed higher susceptibility to hydrogen peroxide, suggesting that glutathione binding to Cys residues may have a role in the defence against oxidative damage. Ice-CA is characterized by lower thermal stability, higher activity and lower activation energy than its homologue gill CA of the temperate European eel, confirming the adaptation of the catalytic capacity to low temperatures. Alignment of Ice-CA with homologous enzymes from other fish shows high identity; the enzyme is grouped with a previously described fish CA monophyletic clade although Ice-CA shows several characteristics that can increase protein-solvent interaction and structural flexibility.


Gill carbonic anhydrase Antarctic fish haemoglobinless Chionodraco hamatus amino acid sequence S-glutathionylation 



carbonic anhydrase


icefish carbonic anhydrase




5,5′-dithio-bis 2-nitrobenzoic acid


isoelectric focusing


red blood cell, erythrocyte


reactive oxygen species


superoxide dismutase




glutathione peroxidase



This work is in the framework of the Italian National Programme for Antarctic Research and it was also supported by the Italian National programme FIRB RBNE03FMCJ_003. We are sincerely grateful to Dr. Mario Zucchelli for his durable collaboration within PNRA and Dr. Antonio Danieli for his technical assistance.


  1. Abele A., Puntarulo S. (2004). Comp. Biochem. Physiol. A. 138: 405–415CrossRefGoogle Scholar
  2. Ansaldo M., Luquet C. M., Evelson P. A., Polo J. M., Llesuy S. (2000). Polar Biol. 23: 160–165CrossRefGoogle Scholar
  3. Appleton D., Sarkar B. (1974). Proc. Natl. Acad. Sci. U.S.A. 71: 1686–1690CrossRefGoogle Scholar
  4. Arnold F. H., Wintrode P. L., Miyazaki K., Gershenson A. (2001). Trends Biochem. Sci. 26: 1000–1066CrossRefGoogle Scholar
  5. Bergenhem N., Carlsson U., Strid L. (1986). Biochim. Biophys. Acta 87: 155–160Google Scholar
  6. Camardella L., Damonte G., Carratore V., Benatti U., Tonetti M., Moneti G. (1995). Biochem. Biophys. Res. Commun. 207: 331–338CrossRefGoogle Scholar
  7. Chai Y. C., Jung C. H., Lii C. K., Ashraf S. S., Hendrich S., Wolf B., Sies H., Thomas J. A. (1991). Arch. Biochem. Biophys. 284: 270–278CrossRefGoogle Scholar
  8. Chegwidden W. R., Carter N. D. (2000). In: Chegwidden W. R., Carter N. D., Edwards Y. H. (eds.), The Carbonic Anhydrases: New Horizons. Birkhäuser Verlag, Boston, USA, pp. 13–28Google Scholar
  9. Ciardiello M. A., Camardella L., di Prisco G. (1995). Biochim. Biophys. Acta 1250: 76–82Google Scholar
  10. Ciardiello M. A., Camardella L., Carratore V., di Prisco G. (2000). Biochim. Biophys. Acta 1543: 11–23Google Scholar
  11. Crockett E. L., Sidell B. D. (1990). Physiol. Zool. 63: 472–488Google Scholar
  12. D’Amico S., Gerday C., Feller G. (2001). J. Biol. Chem. 276: 25791–25796CrossRefGoogle Scholar
  13. Davail S., Feller G., Narinx E., Gerday C. (1994). J. Biol. Chem. 269: 17448–17453Google Scholar
  14. Drud Jordan A., Jungersen M., Steffensen J. F. (2001). J. Fish Biol. 59: 818–823Google Scholar
  15. Dunn J. F. (1988). Can. J. Zool. 66: 1098–1104CrossRefGoogle Scholar
  16. Eastman J. T. (1993). In: Antarctic Fish Biology: Evolution in a Unique Environment. Academic Press, San Diego, CAGoogle Scholar
  17. Ellman G. L. (1959). Arch. Biochem. Biophys. 82: 70–77CrossRefGoogle Scholar
  18. Esbaugh A. J., Tufts B. L. (2006a). J. Exp. Biol. 209: 1169–1178CrossRefGoogle Scholar
  19. Esbaugh A. J., Tufts B. L. (2006b). Respir. Physiol. Neurobiol. 154: 185–198CrossRefGoogle Scholar
  20. Esbaugh A. J., Lund S. G., Tufts B. L. (2004). J. Comp. Physiol. B. 174: 429–438Google Scholar
  21. Esbaugh A. J., Perry S. F., Bayaa M., Georgalis T., Nickerson J., Tufts B. L., Gilmour K. M. (2005). J. Exp. Biol. 208: 1951–1961CrossRefGoogle Scholar
  22. Feller G., Narinx E., Arpigny J. L., Aittaleb M., Baise E., Genicot S., Gerday C. (1996). FEMS Microbiol. Rev. 18: 189–202CrossRefGoogle Scholar
  23. Feller G., Poncin A., Aittaleb M., Schyns R., Gerday C. (1994). Comp. Biochem. Physiol. B. 109: 89–97CrossRefGoogle Scholar
  24. Fields P. A., Somero G. N. (1998). Proc. Natl. Acad. Sci. U.S.A. 95: 11476–11481CrossRefGoogle Scholar
  25. Fletcher G. L. (1977). Can. J. Zool. 55: 789–795CrossRefGoogle Scholar
  26. Georgalis T., Gilmour K. M., Yorston J., Perry S. F. (2006a). Am. J. Physiol. 291: F407–F421CrossRefGoogle Scholar
  27. Georgalis T., Perry S. F., Gilmour K. M. (2006b). J. Exp. Biol. 209: 518–530CrossRefGoogle Scholar
  28. Gerday C., Aittaleb M., Arpigny J. L., Baise E., Chessa J. P., Garsoux G., Petrescu I., Feller G. (1997). Biochim. Biophys. Acta 1342: 119–131Google Scholar
  29. Guderley H., St-Pierre J. (2002). J. Exp. Biol. 205: 2237–2249Google Scholar
  30. Halliwell B., Gutteridge J. M. C. (1985). In: Halliwell B., Gutteridge J. M. C., (eds.), Free Radicals in Biology and Medicine, 2nd edn. Clarendon Press, Oxford, UK, pp. 188–276Google Scholar
  31. Heise K., Puntarulo S., Pörtner H. O., Abele D. (2003) Comp. Biochem. Physiol. C 134: 79–90CrossRefGoogle Scholar
  32. Henry R. P. (1996). Annu. Rev. Physiol. 58: 523–538CrossRefGoogle Scholar
  33. Hewett-Emmett D. (2000). In: Chegwidden W. R., Carter N. D., Edwards Y. H. (eds.), The Carbonic Anhydrases: New Horizons. Birkhäuser Verlag, Boston, USA, pp. 29–76Google Scholar
  34. Hewett-Emmett D., Tashian R. E. (1996). Mol. Phylogenet. Evol. 5: 50–77CrossRefGoogle Scholar
  35. Hoyoux A., Blaise V., Collins T., D’Amico S., Gratia E., Huston A. L., Marx J. C., Sonan G., Zeng Y., Feller G., Gerday C. (2004). J. Biosci. Bioeng. 98: 317–330Google Scholar
  36. Jamieson D., Chance B., Cadenas E., Boveris A. (1986). Annu. Rev. Physiol. 48: 703–719CrossRefGoogle Scholar
  37. Johnston I. A. (1981). Symp. Zool. Soc. Lond. 48: 13–71Google Scholar
  38. Johnston I. A., Calvo J., Guderley H., Fernandez D., Palmer L. (1998). J. Exp. Biol. 201: 1–12Google Scholar
  39. Kim G., Levine R. L. (2005). Antioxid. Redox Signal. 7: 849–854CrossRefGoogle Scholar
  40. Kim S. Y., Hwang K. Y., Kim S. H., Sung H. C., Han Y. S., Cho Y. (1999). J. Biol. Chem. 274: 11761–11767CrossRefGoogle Scholar
  41. Kumar S., Tamura K., Nei M. (2004). Brief. Bioinform. 5: 150–163CrossRefGoogle Scholar
  42. Laemmli U. K. (1970). Nature 227: 680–685CrossRefGoogle Scholar
  43. Lonhienne T., Gerday C., Feller G. (2000). Biochim. Biophys. Acta. 1543: 1–10Google Scholar
  44. Lund S. G., Dyment P., Gervais M. R., Moyes C. D., Tufts B. L. (2002). J. Comp. Physiol. B. 172: 467–476CrossRefGoogle Scholar
  45. MacDonald J. A., Wells R. M. G. (1991). In: di Prisco G., Maresca B., Tota B. (eds.), Biology of Antarctic Fishes. Springer Verlag, Berlin, pp. 163–178Google Scholar
  46. Maffia M., Acierno R., Deceglie G., Vilella S., Storelli C. (1993). J. Comp. Physiol. B. 163: 265–270CrossRefGoogle Scholar
  47. Maffia M., Rizzello A., Acierno R., Rollo M., Chiloiro R., Storelli C. (2001). J. Exp. Biol. 204: 3983–3992Google Scholar
  48. Mallis R. J., Hamann M. J., Zhao W., Zhang T., Hendrich S., Thomas J. A. (2002). Biol. Chem. 383: 649–662CrossRefGoogle Scholar
  49. Mallis R. J., Poland B. W., Chatterjee T. K., Fisher R. A., Darmawan S., Honzatko R. B., Thomas J. A. (2000). FEBS Lett. 482: 237–241CrossRefGoogle Scholar
  50. Maynard J. R., Coleman J. E. (1971). J. Biol. Chem. 246: 4455–4464Google Scholar
  51. Pellegrino D., Acierno R., Tota B. (2003). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 134: 471–480CrossRefGoogle Scholar
  52. Riener C. K., Kada G., Gruber H. J. (2002). Anal. Bioanal. Chem. 373: 266–276CrossRefGoogle Scholar
  53. Ruud J. T. (1965). Sci. Am. 213: 108–114CrossRefGoogle Scholar
  54. Sawaya M. R., Cannon G. C., Heinhorst S., Tanaka S., Williams E. B., Yeates T. O., Kerfeld C. A. (2006). J. Biol. Chem. 281: 7546–7555CrossRefGoogle Scholar
  55. Shinar H., Navon G. (1974). Biochim. Biophys. Acta. 334: 471–475Google Scholar
  56. So A. K., Espie G. S., Williams E. B., Shively J. M., Heinhorst S., Cannon G. C. (2004). J. Bacteriol. 186: 626–630CrossRefGoogle Scholar
  57. Sommer A., Pörtner H. O. (2002). Mar. Ecol. 240: 171–182CrossRefGoogle Scholar
  58. Stams T., Christianson D. W. (2000). In: Chegwidden W. R., Carter N. D., Edwards Y. H. (eds.), The Carbonic Anhydrase: New Horizons. Birkhauser Verlag, Boston, USA, pp. 159–174Google Scholar
  59. Steffensen J. F. (2002). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132: 789–795CrossRefGoogle Scholar
  60. Steffensen J. F., Bushnell P. G., Schurmann H. (1994). Polar Biol. 14: 49–54CrossRefGoogle Scholar
  61. Tashian R. E., Hewett-Emmett D., Carter N., Bergenhem N. C. (2000). EXS. 90: 105–120Google Scholar
  62. Whitney P. L. (1974). Anal. Biochem. 57: 467–476CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Antonia Rizzello
    • 1
  • M. Antonietta Ciardiello
    • 2
  • Raffaele Acierno
    • 1
  • Vito Carratore
    • 2
  • Tiziano Verri
    • 1
  • Guido di Prisco
    • 2
  • Carlo Storelli
    • 1
  • Michele Maffia
    • 1
  1. 1.Laboratory of General Physiology, Department of Biological and Environmental Science and TechnologyUniversity of SalentoLecceItaly
  2. 2.Institute of Protein BiochemistryC.N.R.NaplesItaly

Personalised recommendations