The Protein Journal

, Volume 26, Issue 6, pp 371–385

Competitive Inhibitory Effects of Acetazolamide upon Interactions with Bovine Carbonic Anhydrase II

  • Shahrokh Safarian
  • Fatemeh Bagheri
  • Ali Akbar Moosavi-Movahedi
  • Massoud Amanlou
  • Nader Sheibani


Sulfonamide drugs mediate their main therapeutic effects through modulation of the activity of membrane and cytosolic carbonic anhydrases. How interactions of sulfonamide drugs impact structural properties and activity of carbonic anhydrases requires further study. Here the effect of acetazolamide on the structure and function of bovine carbonic anhydrase II (cytosolic form of the enzyme) was evaluated. The Far-UV CD studies indicated that carbonic anhydrase, for the most part, retains its secondary structure in the presence of acetazolamide. Fluorescence measurements using iodide ions and ANS, along with ASA calculations, revealed that in the presence of acetazolamide minimal conformational changes occurred in the carbonic anhydrase structure. These structural changes, which may involve spatial reorientation of Trp 4 and Trp 190 or some other related aminoacyl residues near the active site, considerably reduced the catalytic activity of the enzyme while its thermal stability was slightly increased. Our binding results indicated that binding of acetazolamide to the protein could occur with a 1:1 ratio, one mole of acetazolamide per one mole of the protein. However, the obtained kinetic results supported the existence of two acetazolamide binding sites on the protein structure. The occupation of each of these binding sites by acetazolamide completely inactivates the enzyme. Advanced analysis of the kinetic results revealed that there are two substrate (p-NPA) binding sites whose simultaneous occupation is required for full enzyme activity. Thus, these studies suggest that the two isoforms of CA II should exist in the medium, each of which contains one substrate binding site (catalytic site) and one acetazolamide binding site. The acetazolamide binding site is equivalent to the catalytic site, thus, inhibiting enzyme activity by a competitive mechanism.


Bovine carbonic anhydrase II acetazolamide binding study competitive inhibition isoforms 



carbonic anhydrase


bovine carbonic anhydrase


human carbonic anhydrase








extinction coefficient


anilinonaphtalene sulfonic acid


potassium iodide


circular dichroism


accessible surface area


milliabsorbance per minute


arbitrary unit


surface unit equal to one square of Angstrom


  1. Abbate F., Casini A., Scozzafava A., Supuran C. T. (2004) Bioorg. Med. Chem. Lett. 14:2357–2361CrossRefGoogle Scholar
  2. Agrawal V. K., Bano S., Supuran C. T., Khadikar P. V. (2004) Eur. J. Med. Chem. 39:593–600CrossRefGoogle Scholar
  3. Armstrong J. M., Meyrs D. V., Verpoorte J. A., Edsall J. T. (1966) J. Biol. Chem. 241:5137–5149Google Scholar
  4. Bardsley W. G., Leff P., Kavanagh, J., Waight R. (1980) Biochem. J. 187:739–765Google Scholar
  5. Bohm G., Muhr R., Jaenicke R. (1992) Protein Eng. 5:191–195CrossRefGoogle Scholar
  6. Burnham L., Dollimore D., Alexander K. S. (2001) Themochimica Acta, 392:127–134CrossRefGoogle Scholar
  7. Chakravarty S., Kannan K. K. (1994) J. Mol. Biol. 243:298–309CrossRefGoogle Scholar
  8. Coleman J. E. (1967) J. Biol. Chem. 242:5212–5219Google Scholar
  9. Freifilder D. (1985) Physical Chemistry with Application to Biological Science. Jones and Bartlett Publishers, Inc, Bostone, MAGoogle Scholar
  10. Hakansson K., Carlsson M., Svensson L. A., Lilijas A. (1992) J. Mol. Biol. 227:1192–1204CrossRefGoogle Scholar
  11. Hinz H. J. (1983) Annu. Rev. Biophys. Bioeng. 12:258–317CrossRefGoogle Scholar
  12. Lindskog S. (1963) J. Biol. Chem. 238:945–951Google Scholar
  13. Lindskog S. (1997) Pharmacol. Ther. 74:1–20CrossRefGoogle Scholar
  14. Lindskog S., Thorslund A. (1968) Eur. J. Biochem. 3:453–460CrossRefGoogle Scholar
  15. Liu L. P., Deber C. M. (1997) Biochemistry, 36:5476–5482CrossRefGoogle Scholar
  16. Moosavi-Movahedi Z., Safarian S., Zahedi M., Sadeghi M. Saboury A. A., Chamani J., Bahrami H., Ashraf-Modaress A., Moosavi-Movahedi A. A. (2006) Protein J. 25:193–201CrossRefGoogle Scholar
  17. Nyman P. O., Lindskog S. (1964) Biochim. Biophys. Acta 85:141–151Google Scholar
  18. Ohta S. Alam M. T., Arakawa H., Ikai A. (2004) Biophys. J. 87:4007–4020CrossRefGoogle Scholar
  19. Pocker Y., Stone J. T. (1967) Biochemistry 6:668–678CrossRefGoogle Scholar
  20. Radhakrishnan R., Sluka K. A. (2005) J Pharmacol Exp Ther. 313:221–227Google Scholar
  21. Richter A., Hamann M. (2004) Eur. J. Pharmacol. 502:105–108CrossRefGoogle Scholar
  22. Riehl B, Schlue W. R. (1993) Comp. Biochem. Physiol. B 106:717–718CrossRefGoogle Scholar
  23. Safarian S., Saffarzadeh M., Zargar S. J., Moosavi-Movahedi A. A. (2006) J. Biochem. (Tokyo) 139:1025–1033Google Scholar
  24. Saito R., Sato T., Ikai A., Tanaka N. (2004) Acta Crystallogr. D. Biol. Crystallogr. 60:792–795CrossRefGoogle Scholar
  25. Sergienko E. A., Srivastava D. K. (1997) Biochem. J. 328:83–91Google Scholar
  26. Shoichet B. K., Baase W. A., Kuroki R., Matthews B. W. (1995) Proc. Natl. Acad. Sci. U.S.A 92:452–456CrossRefGoogle Scholar
  27. Shrake A., Rupley J. A. (1973) J. Mol. Biol. 79:351–371CrossRefGoogle Scholar
  28. Supuran C. T., Scozzafava A. (2001) Curr. Med. Chem Imm. Endoc. Metab. Agents 1:61–97CrossRefGoogle Scholar
  29. Tashian R. E., Plato C. C., Shows T. B. (1963) Science 140:53–54CrossRefGoogle Scholar
  30. Thorslund A., Lindskog S. (1967) Eur. J. Biochem. 3:117–123CrossRefGoogle Scholar
  31. Vidgren J., Liljas A., Walker N. P. C. (1990) Int. J. Biol. Macromol. 12:342–344CrossRefGoogle Scholar
  32. Vidgren J., Svensson A., Liljas A. (1993) Int. J. Biol. Macromol. 15:97–100CrossRefGoogle Scholar
  33. Wimley W. C., Creamer T. P., White S. H. (1996) Biochemistry, 35:5109–5124CrossRefGoogle Scholar
  34. Wingard L. B., Brody T. M., Larner J., Schwartz A. (1991) Human Pharmacology: Molecular to Clinical. Mosby-Year Book, Inc, St. Louis, MissouriGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Shahrokh Safarian
    • 1
  • Fatemeh Bagheri
    • 1
  • Ali Akbar Moosavi-Movahedi
    • 2
  • Massoud Amanlou
    • 3
  • Nader Sheibani
    • 4
  1. 1.Department of Cell and Molecular Biology, School of BiologyUniversity College of Science, University of TehranTehranIran
  2. 2.Institute of Biochemistry & BiophysicsUniversity of TehranTehranIran
  3. 3.Faculty of PharmacologyTehran University of Medical SciencesTehranIran
  4. 4.Departments of Ophthalmology and Visual Sciences and PharmacologyUniversity of WisconsinMadisonUSA

Personalised recommendations