The Protein Journal

, Volume 26, Issue 5, pp 281–291 | Cite as

A Novel Arginine Kinase with Substrate Specificity Towards d-arginine

  • Kouji Uda
  • Tomohiko SuzukiEmail author


We determined the cDNA-derived amino acid sequences of two arginine kinases (AK1, AK2) from the annelid Sabellastarte indica, cloned the cDNAs into pMAL plasmid and expressed them in E. coli. The phylogenetic analyses suggested that Sabellastarte AKs have evolved from a CK-related gene, not from the usual AK gene. The recombinant Sabellastarte AK1 showed a broad specificity towards various guanidine compounds, while the Sabellastarte AK2 mainly showed stronger activity for both d- and l-arginine, a very unique substrate specificity not seen before in usual AKs. We isolated guanidino compounds from the body wall musculature of Sabellastarte, and found that the major compound is d-arginine with a concentration of 4.85 ± 0.51 mmol/kg. From these results, we suggest strongly that in Sabellastarte, d-arginine is the major phosphagen substrate and that the AK2 with substrate specificity towards d-arginine, catalyzes the phosphorylation of d-arginine.


d-amino acid guanidino kinase phosphagen kinase arginine kinase creatine kinase substrate specificity Sabellastarte indica 



arginine kinase


creatine kinase


taurocyamine kinase


glycocyamine kinase


lombricine kinase


1–fluoro-2, 4–dinitrophenyl-5-l-alanine amide


maltose binding protein; ORF, open reading frame



We thank Prof. W. Ross Ellington of Florida State University for kindly reading this manuscript and giving us invaluable suggestions. We also thank Shuichi Ichinari for the supply of lombricine. This work was supported by grants from the Grants-In-Aid for Scientific Research of Japan to TS (17570062) and to KU (173622).


  1. Abe H., Yoshikawa N., Sarower M. G., Okada S. (2005). Biol. Pharm. Bull. 28:1571–1577CrossRefGoogle Scholar
  2. Borson N. D., Salo W. L., and Drewes L. R. (1992). A lock-docking oligo(dT) primer for 5' and 3' RACE PCR. 2: 144–148Google Scholar
  3. Chomczynski P., Sacchi N. (1987). Anal. Biochem. 162:156–159CrossRefGoogle Scholar
  4. Compaan D. M., Ellington W. R. (2003). J. Exp. Biol. 206:1545–1556CrossRefGoogle Scholar
  5. di Jeso F., Malcovati M., Gaetani M. T., Speranza M. L. (1967). Comp. Biochem. Physiol. 20:607–610CrossRefGoogle Scholar
  6. Edmiston P. L., Schavolt K. L., Kersteen E. A., Moore N. R., Borders C. L. (2001). Biochim. Biophys. Acta 1546:291–298Google Scholar
  7. Ellington W. R. (1989). J. Exp. Biol. 143:177–194Google Scholar
  8. Ellington W. R. (2001). Ann. Rev. Physiol. 63:289–325CrossRefGoogle Scholar
  9. Felbeck H., Wiley S. (1987). Biol. Bull. 173:252–259CrossRefGoogle Scholar
  10. Fuchs S. A., Berger R., Klomp L. W., de Koning T. J. (2005). Mol. Genet. Metab. 85:168–180CrossRefGoogle Scholar
  11. Fujii N., Saito T. (2004). Chem. Rec. 4:267–278CrossRefGoogle Scholar
  12. Hamase K., Morikawa A., Zaitsu K. (2002). J. Chromatogr. B 781:73–91CrossRefGoogle Scholar
  13. Lahiri S. D., Wang P. F., Babbitt P. C., McLeish M. J., Kenyon G. L., Allen K. N. (2002). Biochemistry 41:13861–13867CrossRefGoogle Scholar
  14. Makisumi S. (1961). J. Biochem. (Tokyo) 49:292–296Google Scholar
  15. Marfey P. (1984). Carlsberg Res. Commun. 49:591–596CrossRefGoogle Scholar
  16. Morrison J. F. (1973) In: Boyer, P. C. (ed.), Enzymes, Academic Press, New York, pp. 457–486. Google Scholar
  17. Morrison J. F., James E. (1965). Biochem. J. 97:37–52Google Scholar
  18. Nagata Y., Yamamoto K., Shimojo T. (1992). J. Chromatogr. 575:147–152CrossRefGoogle Scholar
  19. Robin Y. (1964). Comp. Biochem. Physiol. 12:347–367CrossRefGoogle Scholar
  20. Robin Y., Klotz C., Thoai V. N. (1971). Eur. J. Biochem. 21:170–178CrossRefGoogle Scholar
  21. Robin Y., Klotz C., Guillou Y., Benyamin Y. (1975). Comp. Biochem. Physiol. B 52:387–392CrossRefGoogle Scholar
  22. Rosenberg H., Ennor A., Morrison J. (1956). Biochem. J. 63:153–159Google Scholar
  23. Suzuki T., Furukohri T. (1994). J. Mol. Biol. 237:353–357CrossRefGoogle Scholar
  24. Suzuki T., Kawasaki Y., Furukohri T., Ellington W. R. (1997a). Biochim. Biophys. Acta 1343:152–159Google Scholar
  25. Suzuki T., Kawasaki Y., Furukohri T. (1997b). Biochem. J. 328:301–306Google Scholar
  26. Suzuki T., Kawasaki Y., Unemi Y., Nishimura Y., Soga T., Kamidochi M., Yazawa Y., Furukohri T. (1998). Biochim. Biophys. Acta 1388:253–259Google Scholar
  27. Suzuki T., Kamidochi M., Inoue N., Kawamichi H., Yazawa Y., Furukohri T., Ellington W. R. (1999). Biochem. J. 340:671–675CrossRefGoogle Scholar
  28. Suzuki T., Yamamoto Y., Umekawa M. (2000a). Biochem. J. 351:579–585CrossRefGoogle Scholar
  29. Suzuki T., Fukuta H., Nagato H., Umekawa M. (2000b). J. Biol. Chem. 275:23884–23890CrossRefGoogle Scholar
  30. Suzuki T., Mizuta C., Uda K., Ishida K., Mizuta K., Sona S., Compaan D. M., Ellington W. R. (2004). J. Mol. Evol. 59:218–226CrossRefGoogle Scholar
  31. Takeuchi M., Mizuta C., Uda K., Fujimoto N., Okamoto M., Suzuki T. (2004). Cell. Mol. Life Sci. 61:110–117CrossRefGoogle Scholar
  32. Takigawa Y., Homma H., Lee J. A., Fukushima T., Santa T., Iwatsubo T., Imai K. (1998). Biochem. Biophys. Res. Commun. 248:641–647CrossRefGoogle Scholar
  33. Tanaka K., Suzuki T. (2004). FEBS Lett. 573:78–82CrossRefGoogle Scholar
  34. Uda K., Suzuki T. (2004). Protein J. 23:53–64CrossRefGoogle Scholar
  35. Uda K., Saishoji N., Ichinari S., Ellington W. R., Suzuki T. (2005). FEBS J. 272:3521–3530CrossRefGoogle Scholar
  36. Virden R., Watts D. C. (1964). Comp. Biochem. Physiol. 13:161–177CrossRefGoogle Scholar
  37. Watts D. C. (1968). In: Van Thoai, N. and Roche, J. (eds.), Homologous Enzymes and Biochemical Evolution, Gordon and Breach, New York, pp. 279–296Google Scholar
  38. Wyss M., Kaddurah-Daouk R. (2000). Physiol. Rev. 80:1107–1213Google Scholar
  39. Wyss M., Smeitink J., Wevers R. A., Wallimann T. (1992) .Biochim. Biophys. Acta 1102:119–166CrossRefGoogle Scholar
  40. Yamada A., Matsushima O. (1992). Comp. Biochem. Physiol. B 103:617–621CrossRefGoogle Scholar
  41. Yorifuji T., Ogata K. (1971). J. Biol. Chem. 246:5085–5092Google Scholar
  42. Zhou G., Somasundaram T., Blanc E., Parthasarathy G., Ellington W. R., Chapman M. S. (1998). Proc. Natl. Acad. Sci. U. S. A. 95:8449–8454CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Laboratory of Biochemistry, Faculty of ScienceKochi UniversityKochiJapan

Personalised recommendations