The Protein Journal

, Volume 26, Issue 4, pp 221–230

Biological and Structural Characterization of Crotoxin and New Isoform of Crotoxin B PLA2 (F6a) from Crotalus durissus collilineatus Snake Venom

  • Luis Alberto Ponce-Soto
  • Bruno Lomonte
  • Lea Rodrigues-Simioni
  • José Camillo Novello
  • Sergio Marangoni


A new crotoxin B isoform PLA2 (F6a), from Crotalus durissus collilineatus was purified from by one step reverse phase HPLC chromatography using μ-Bondapack C-18 column analytic. The new crotoxin B isoform PLA2 (F6a), complex crotoxin, the catalytic subunit crotoxin B isoform PLA2 (F6a) and two crotapotin isoforms (F3 and F4), were isolated from the venom of Crotalus durissus collilineatus. The crotapotins isoforms F3 and F4 had similar chemical properties, the two proteins different in their ability to inhibit of isoforms of PLA2 (F6 and F6a). The molecular masses estimated by MALDI-TOF mass spectrometry were: crotoxin B: 14,943.14 Da, crotapotin F3: 8,693.24 Da, and crotapotin F4: 9 314.56 Da. The new crotoxin B isoform PLA2 (F6a) contained 122 amino acid residues and a pI of 8.58. Its amino acid sequence presents high identity with those of other PLA2s, particularly in the calcium binding loop and active site helix 3. It also presents similarities in the C-terminal region with other myotoxic PLA2s. The new crotoxin B isoform PLA2 (F6a) contained 122 amino acid residues, with a primary structure of HLLQFNKMIK FETRRNAIPP YAFYGCYCGW GGRGRPKDAT DRCCFVHDCC YGKLAKCNTK WDFYRYSLKS GYITCGKGTW CEEQICECDR VAAECLRRSL STYRYGYMIY PDSRCRGPSE TC. A neuromuscular blocking activity was induced by crotoxin and new crotoxin B isoform PLA2 (F6a) in the isolated mouse phrenic nerve diaphragm and the biventer cervicis chick nerve-muscle preparation. Whole crotoxin was devoid of cytolytic activity upon myoblasts and myotubes in vitro, whereas new crotoxin B isoform PLA2 (F6a) was clearly cytotoxic to these cells.


Biventer cervicis chick Crotalus durissus collilineatus crotoxin crotoxin B isoform PLA2 (F6a) mass spectrometry Maldi-Tof myoblasts myotubes venom neurotoxin 


Crotoxin B

complex crotoxinB


High performance liquid chromatograph reverse phase

F3 and F4

crotapotins isoforms

F6 and F6a

isoforms of PLA2


Matrix Assisted Laser Desorption Ionization-Time-of-flight. Mass Spectrometry

μ-Bondapack C-18

column HPLC with 18 carbons


phenylthiocarbamyl- aminoacids






reduced and carboxymethylated-PLA2


Staphylococcus aureus protease







MS spectral profiles

mass spectrometric spectral profiles.


  1. Angulo Y., Olamendi-Portugal T., Alape-Girón A., Possani L. D., Lomonte B. (2002) Int. J. Biochem. 34: 1268–1278Google Scholar
  2. Araújo, F. A. A., SantaLúcia, M., and Cabral, R. F. (2003). In: Cardoso, J. L. C., França, F. O. S., Fan, H. W., Málaque, C. M. S., and Haddad Jr., V. (eds.), Sarvier/FAPESP, São Paulo, pp 6–12Google Scholar
  3. Azevedo-Marques M. M., Cupo P., Coimbra T. M., Hering S. E., Rossi M. A., Laure C. J. (1982) Toxicon 23: 631–636CrossRefGoogle Scholar
  4. Beghini D. G., Toyama M. H., Hyslop S., Sodek L., Novello J. C.,Marangoni S. (2000) J. Protein Chem. 19: 603–607PubMedCrossRefGoogle Scholar
  5. Bon C., Bouchier C., Choumet V., Faure G., Jiang M. S., Lambezat M. P., Radvanyi F., Saliou B. (1989) Acta Physiol. Pharmacol. Latinoam. 39(4): 439–448PubMedGoogle Scholar
  6. Bon C., Changeux J. P., Jeng T. W., Fraenkel-Conrat H. (1979) Eur. J. Biochem. 99: 471–481PubMedCrossRefGoogle Scholar
  7. Brazil O. V., Excell B. J. (1971) J Physiol. 212(2): 34P–35PPubMedGoogle Scholar
  8. Breithaupt H. (1976) Toxicon 14: 221–233. PubMedCrossRefGoogle Scholar
  9. Bülbring E. (1946) Br. J. Pharmacol. 1: 38–61 Google Scholar
  10. Chioato L., De Oliveira A. H., Ruller R., Sa J. M., Ward R.J. (2002) Biochem. J. 366(Pt 3): 971–976PubMedGoogle Scholar
  11. Cho W., Kézdy F. J. (1991) Methods Enzymol. 197: 75–79PubMedCrossRefGoogle Scholar
  12. Curin-Serbec V., Novak D., Babnik J., Turk D., Gubensek F. (1991) A. FEBS Lett. 280(1): 175–178CrossRefGoogle Scholar
  13. Faure G., Bon C. (1987) Taxicon 25(2): 229–234CrossRefGoogle Scholar
  14. Faure G., Bon C. (1988) Biochemistry 27: 730–738PubMedCrossRefGoogle Scholar
  15. Faure G., Choumet V., Bouchier C., Camoin L., Guillaume J. L., Monegier B., Vuilhorgne M., Bon C. (1994) Eur. J. Biochem. 223: 161–164PubMedCrossRefGoogle Scholar
  16. Faure G., Guillaume J. L., Camoin L., Saliou B., Bon C. (1991) Biochemistry 30: 8074–8083PubMedCrossRefGoogle Scholar
  17. Faure G., Harvey A. L., Thomson E., Saliou B., Radvanyi F., Bon C. (1993) Eur. J. Biochem. 214(2): 491–496PubMedCrossRefGoogle Scholar
  18. Ginsborg B. L., Warriner J. (1960) Brit. J. Physiol. 150: 707–717Google Scholar
  19. Gopalakrishnakone P., Dempster D. W., Hawgood B. J., Elder H. Y. (1984) Toxicon. 22(1): 85–98PubMedCrossRefGoogle Scholar
  20. Gutierrez J. M., Lomonte B. (1995) Toxicon 33(11): 1405–1424PubMedCrossRefGoogle Scholar
  21. Gutierrez J. M., Ownby C. L. (2003) Toxicon 42(8): 915–931PubMedCrossRefGoogle Scholar
  22. Habermann E., Breithaupt H. (1978) Toxicon 16: 19–30PubMedCrossRefGoogle Scholar
  23. Harvey A. L., Barfaraz A., Thompson E., Faiz A., Preston S., Harris J. B. (1994) Toxicon. 32: 257–265PubMedCrossRefGoogle Scholar
  24. Hawgood B. J., Santana de Sa S. (1979) Neuroscience 4(2): 293–303PubMedCrossRefGoogle Scholar
  25. Hawgood B. J., Smith J. (1977) J Physiol. 266(1): 91P-92PPubMedGoogle Scholar
  26. Heinrikson R. L., Meredith S. C. (1984) Anal. Biochem. 13: 65–72CrossRefGoogle Scholar
  27. Holzer M., Mackessy S. P. (1996) Toxicon 34: 1149–1155PubMedCrossRefGoogle Scholar
  28. Kini R. M., Evans H. J. (1989) Toxicon 27(6): 613–635PubMedCrossRefGoogle Scholar
  29. Kini R. M., (2003) Toxicon 42(8): 827–840PubMedCrossRefGoogle Scholar
  30. Krizaj I., Turk D., Ritonja A., Gubensek F. (1989) Biochim. Biophys. Acta. 30(2): 198–202Google Scholar
  31. Lambeau G., Lazdunski M. (1999) Trends Pharmacol. Sci. 20(4): 162–170PubMedCrossRefGoogle Scholar
  32. Lennon B. W., Kaiser II (1990) Comp. Biochem. Physiol. B. 97(4): 695–699PubMedCrossRefGoogle Scholar
  33. Lomonte B., Angulo Y., Santamaría C. (2003) Toxicon 42(3): 307–312PubMedCrossRefGoogle Scholar
  34. Lomonte B., Pizarro-Cerda J., Angulo Y., Gorvel J. P., Moreno E. (1999) Biochim. Biophys. Acta. 1461(1): 19–26PubMedCrossRefGoogle Scholar
  35. Lomonte B., Tarkowski A., Hanson L. A. (1994) Toxicon 32(11): 1359–1369PubMedCrossRefGoogle Scholar
  36. Oliveira D. G., Toyama M. H., Novello J. C., Beriam L. O., Marangoni S. (2002) J. Protein Chem. 21(3): 161–168PubMedCrossRefGoogle Scholar
  37. Ponce-Soto L. A, Toyama M. H., Hyslop S., Novello J. C., Marangoni S. (2002) J Protein Chem. 21(3): 131–136PubMedCrossRefGoogle Scholar
  38. Ponce-Soto L. A., Bonfim V. L., Rodrigues-Simioni L., Novello J. C., Marangoni S. (2006) Protein J. 25(2): 147–155PubMedCrossRefGoogle Scholar
  39. Prijatelj P., Sribar J., Ivanovski G., Krizaj I., Gubensek F., Pungercar J. (2003) Eur. J. Biochem. 270(14): 3018–3025 PubMedCrossRefGoogle Scholar
  40. Rangel-Santos A., Dos-Santos E. C., Lopes-Ferreira M., Lima C., Cardoso D. F., Motam I. (2004) Toxicon. 43(7): 801–810PubMedCrossRefGoogle Scholar
  41. Rubsamen K., Breithaupt H., Habermann E. (1971) Arch. Pharmacol. 270: 274–288Google Scholar
  42. Selistre de Araujo H. S., White S. P., Ownby C. L. (1996) Arch. Biochem. Biophys. 326(1):21–30CrossRefGoogle Scholar
  43. Smolka M. B., Zhou H., Purkayastha S., Aebersold R. (2001) Anal. Biochem. 297(1): 25–31PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Luis Alberto Ponce-Soto
    • 1
  • Bruno Lomonte
    • 3
  • Lea Rodrigues-Simioni
    • 2
  • José Camillo Novello
    • 1
  • Sergio Marangoni
    • 1
  1. 1.Departamento de Bioquímica, Instituto de Biologia (IB)Universidade Estadual de Campinas (UNICAMP) CampinasBrazil
  2. 2.Departamento de Farmacologia, Faculdade de Ciências MédicasUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
  3. 3.Facultad de Microbiología, Instituto Clodomiro PicadoUniversidad de Costa RicaSan JoséCosta Rica

Personalised recommendations