The Protein Journal

, Volume 26, Issue 3, pp 159–164

Synergistic Action of Recombinant α-Amylase and Glucoamylase on the Hydrolysis of Starch Granules

  • D. W. S. Wong
  • G. H. Robertson
  • C. C. Lee
  • K. Wagschal
Article

Abstract

Barley α-amylase 1 mutant (AMY) and Lentinula edodes glucoamylase (GLA) were cloned and expressed in Saccharomyces cerevisiae. The purified recombinant AMY hydrolyzed corn and wheat starch granules, respectively, at rates 1.7 and 2.5 times that of GLA under the same reaction conditions. AMY and GLA synergistically enhanced the rate of hydrolysis by ∼3× for corn and wheat starch granules, compared to the sum of the individual activities. The exo-endo synergism did not change by varying the ratio of the two enzymes when the total concentration was kept constant. A yield of 4% conversion was obtained after 25 min 37°C incubation (1 unit total enzyme, 15 mg raw starch granules, pH 5.3). The temperature stability of the enzyme mixtures was ≤50°C, but the initial rate of hydrolysis continued to increase with higher temperatures. Ca++ enhanced the stability of the free enzymes at 50°C incubation. Inhibition was observed with the addition of 10 mM Fe++ or Cu++, while Mg++ and EDTA had lesser effect.

Keywords

α-amylase glucoamylase starch hydrolysis synergistic action 

Abbreviations

AMY

barley α-amylase isoform 1

GLA

Lentinula edodes glucoamylase

DNSA

dinitrosalicyclic acid

NaOAc

sodium acetate

YEPG

2% yeast extract, 1% bactopeptone, 2% glycerol

SBD

starch-binding domain

References

  1. Balls A. K., Schwimmer S. (1944) J. Biol. Chem. 156:203–211Google Scholar
  2. Fugii M., Homma T., Taniguchi M. (1988) Biotechol. Bioeng. 32:910–915CrossRefGoogle Scholar
  3. Janecek S., Sevcik J. (1999) FEBS Lett. 456:119–125PubMedCrossRefGoogle Scholar
  4. Liakopoulou-Kyriakides, M., Karakatsanis, A., Stamatoudis, M., Psomas, S. (2001). cereal chem. 78: 603–607Google Scholar
  5. Matsumura M., Hirata J., Ishii S., Kobayashi J. (1988) J. Chem. Technol. Biotechnol. 42:51–67CrossRefGoogle Scholar
  6. McLaren A. D., Packer L. (1970) Adv. Enzymol. Rel. Sub. Biochem. 33:245Google Scholar
  7. Morris V. J., Gunning A. P., Faulds C. B., Williamson G., Svensson B. (2005) Starch-Starke 57:1–7CrossRefGoogle Scholar
  8. Robertson, G. H., Wong, D. W. S., Lee, C. S., Wagschal, K., Smith, M. S., Orts, W. J. (2006) J. Agric. Food Chem. 54: 353–365PubMedCrossRefGoogle Scholar
  9. Schwimmer S. (1945) J. Biol. Chem. 157:219–234Google Scholar
  10. Silvanovich M. P., Hill R. D. (1976) Anal. Biochem. 73:430–433PubMedCrossRefGoogle Scholar
  11. Sorimachi K., Le Gal-Coeffet M.-F., Williamson G., Archer D. B., Williamson M. P. (1997) Structure 5:647–661PubMedCrossRefGoogle Scholar
  12. Southall S. M., Simpson P. J., Gilbert H. J., Williamson G., Williamson M. P. (1999) FEBS Lett. 447:58–60PubMedCrossRefGoogle Scholar
  13. Tibbot B. K., Wong D. W. S., Robertson G. H. (2000) J. Protein Chem. 19:663–669PubMedCrossRefGoogle Scholar
  14. Wong D. W. S., Batt S. B., Robertson G. H. (2000) J. Protein Chem. 19:373–377PubMedCrossRefGoogle Scholar
  15. Wong D. W. S., Batt S. B., Lee C. C., Robertson G. H. (2002A) J. Protein Chem. 21:419–425CrossRefGoogle Scholar
  16. Wong D. W. S., Batt S. B., Robertson G. H. (2002B) J. Protein Chem. 20:619–623CrossRefGoogle Scholar
  17. Wong D. W. S., Batt S. B., Lee C. C., Robertson G. H. (2003) Protein Peptide Lett. 10:459–468CrossRefGoogle Scholar
  18. Wong D. W. S., Batt S. B., Lee C. C., Wagschal K., Robertson G. H. (2005) Protein J. 24:1–9CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • D. W. S. Wong
    • 1
  • G. H. Robertson
    • 1
  • C. C. Lee
    • 1
  • K. Wagschal
    • 1
  1. 1.Western Regional Research Center, USDA-ARSAlbanyUSA

Personalised recommendations