The Protein Journal

, Volume 25, Issue 7–8, pp 492–502 | Cite as

Structural and Functional Properties of Cr 5, a New Lys49 Phospholipase A2 Homologue Isolated from the Venom of the Snake Calloselasma rhodostoma

  • V. L. Bonfim
  • L. A. Ponce-Soto
  • J. C. Novello
  • S. Marangoni

Cr 5 PLA2 homologous (K49) was isolated from Calloselasma rhodostoma venom in only one chromatographic step in reverse phase HPLC (RP-HPLC) (on μ-Bondapack C-18). A molecular mass of 13.965 Da was determined by MALDI-TOF mass spectrometry. The amino acid composition showed that Cr 5 had a high content of Lys, Tyr, Gly, Pro, and 14 half-Cys residues, typical residues of a basic PLA2. The complete amino acid sequence of Cr 5 PLA2 contains 120 residues, resulting in a calculated pI value of 5.55. This sequence shows high identity values when compared to other K49 PLA2s isolated from the venoms of viperid snakes. Lower identity is observed in comparison to D49 PLA2s. The sequence found was SLVELGKMIL QETGKNPAKS YGAYGCNCGV LGRHKPKDAT DRCCFVHKCC YKKLTGCDPK KDRYSYSWKD KTIVCGENNP CLKEMCECDK AVAICLRENL DTYNKKYRYL KPFCKKADDC. In mice, Cr 5 induced myonecrosis and edema upon intramuscular and intravenous injections, respectively. The LD50 of Cr 5 was 0.070 mg/kg of the animal weight, by intracerebroventricular (i.c.v.) route. In vitro, the toxin caused rapid cytolytic effect upon mouse skeletal muscle myoblasts in culture. The isolation of this PLA2 and the combined structural and functional information obtained classify Cr 5 as a new member of the K49 PLA2 family, since it presents typical features from such proteins.


Phospholipase A2, Lys49 myotoxin snake venom Calloselasma rhodostoma 



The authors thank Mr. Paulo A. Baldasso for general technical help. This work was supported by CAPES and FAPESP and is part of a PhD thesis by Vera Lucia Bonfim.


  1. Arni, R. K., and Ward, R. J. (1996) Toxicon 34(8): 827–841, ReviewGoogle Scholar
  2. Castro H. C., Dutra D. L., Oliveira-Carvalho A. L., Zingali R. B. (1998). Toxicon 36(12):1903–1912CrossRefGoogle Scholar
  3. Cho W., Kezdy F. J. (1991). Methods Enzymol. 197:75–79CrossRefGoogle Scholar
  4. Cintra A. C. O., Marangoni S., Oliveira B., Giglio J. R. (1993). J. Protein Chem. 12:57–64CrossRefGoogle Scholar
  5. de Perez, O. A., Koscinczuk, P., Negrette, M. S., Teibler, P., and Ruiz, R. (1996). Acta. Physiol. Pharmacol. Ther. Latinoam. 46(2): 97–102Google Scholar
  6. de Roodt A. R., Cominetti M. R. (2003). Acta. Physiol. Pharmacol. Ther. Latinoam. 41(8):949–958Google Scholar
  7. Ebisui C., Tsujinaka T., Morimoto T., Kan K., Ijima S., Yano M., Kominami E., Tanaka K., Monden M. (1995). Clin. Sci. 89:431–439Google Scholar
  8. Francis B., Gutiérrez J. M., Lomonte B., Kaiser J. I. (1991). Arch. Biochem. Biophys. 284(2):352–359CrossRefGoogle Scholar
  9. Gutiérrez J. M., Ownby C. L. (2003). Toxicon 42:915–931CrossRefGoogle Scholar
  10. Gutiérrez J. M., Lomonte B., Chaves F., Moreno E., Cerdas L. (1986). Comp. Biochem. Physiol 84C:159–164Google Scholar
  11. Heinrikson R. L., Meredith S. C. (1984). Anal. Biochem. 136(1):65–74CrossRefGoogle Scholar
  12. Holzer M., Mackessy S. P. (1996). Toxicon. 34:1149–1155CrossRefGoogle Scholar
  13. Jelsch C., Pichon-Pesme V., Lecomte C., Aubry A. (1998). Acta. Crystallogr. D Biol. Crystallogr. 54(Pt 6 Pt 2):1306–1318CrossRefGoogle Scholar
  14. Jennifer C. D., Gnanajothy P., Chai K. S., Nget-Hong T., Roger S. T., Wolfgang W. (1995). Toxicon. 34:67–79Google Scholar
  15. Kini, R. M. (1997). Venom Phospholipase A2 Enzymes:Structure, Function and Mechanism. Wiley, Chichester, England, pp. 1–511Google Scholar
  16. Kini R. M. (2003). Toxicon 4:827–840CrossRefGoogle Scholar
  17. Kini R. M., Chan Y. M. (1999).. J. Mol. Evol. 48(2):125–132CrossRefGoogle Scholar
  18. Kini R. M., Evans H. S. (1987). J. Biol. Chem.. 262(30):14402–14407Google Scholar
  19. Kini R. M., Iwanaga S. (1986). Toxicon. 24(6):527–541CrossRefGoogle Scholar
  20. Kordis D., Gubensek F. (1997). Eur. J. Biochem. 246(3):772–779CrossRefGoogle Scholar
  21. Laemmli U. K. (1970). Nature. 227(259):680–685CrossRefGoogle Scholar
  22. Lee W. H., da Silva Giotto M. T., Marangoni S., Toyama M. H., Polikarpov I., Garrat R. C. (2001). Biochemistry. 40:28–36CrossRefGoogle Scholar
  23. Lomonte, B., Angulo, Y., and Calderon, L. (2003). Toxicon 42(8):885–901, ReviewGoogle Scholar
  24. Lomonte B., Angulo Y., Rufini S., Cho W., Giglio J. R., Ohno M., Daniele J. J., Geoghegan P., Gutiérrez J. M. (1999). Toxicon 37:145–158CrossRefGoogle Scholar
  25. Magro A. J., Soares A. M., Giglio J. R., Fontes M. R. (2003). Biochem. Biophys. Res. Commun. 311(3):713–720CrossRefGoogle Scholar
  26. Ownby, C. L., Selistre de Araujo, H. S., White S. P., and Fletcher, J. E. (1999) Toxicon. 37(3): 411–445, ReviewGoogle Scholar
  27. Pedersen J. Z., de Arcuri B. F., Moreno R., Ruffini S. (1994). Biochim. Biophys. Acta. 1190:177–180CrossRefGoogle Scholar
  28. Ponce-Soto L. A., Bonfim V. L, Rodrigues-Simioni L., Novello J. C., Marangini S. (2006) Protein J. 25(2):147–155CrossRefGoogle Scholar
  29. Ponce-Soto L. A., Toyama M. H., Hyslop S., Novello J. C., Marangoni S. (2002). J. Protein Chem. 21(3):131–136CrossRefGoogle Scholar
  30. Rosenberg, P. (1997). In: Kini, R.M. (ed.), Venom Phospholipase A 2 Enzymes: Structure, Function and Mechanism, Wiley, New York, pp. 129–154Google Scholar
  31. Schägger H., von Jagow G. (1987). Anal. Biochem. 166(2):368–379CrossRefGoogle Scholar
  32. Scott, D. L., White, S. P., Otwinowski, Z., Yuan, W., Gelb, M. H., and Sigler P. B. (1990). Science 250(4987): 1541–1546Google Scholar
  33. Selistre de Araujo, H. S., White, S. P., and Ownby, C. L. (1996). Arch. Biochem. Biophys. 326(1): 21–30Google Scholar
  34. Six, D. A., and Dennis, E. A. (2000). Biochim. Biophys. Acta. 1488(1–2):1–19, ReviewGoogle Scholar
  35. Smolka M. B., Zhou H., Purkayastha S., Aebersold R. (2001). Anal. Biochem. 297(1):25–31CrossRefGoogle Scholar
  36. Smolka M. B., Marangoni S., Oliveira B., NovelloJ. C. (1998). Toxicon 36(7):1059–1063CrossRefGoogle Scholar
  37. Soares A. M., Rodrigues V. M., Homsi-Brandeburgo M. I., Toyama M. H., Lombardi F. R., Arni R. K., Giglio J. R. (1998). Toxicon 36:503–514CrossRefGoogle Scholar
  38. Toyama M. H., Mancuso L. Ç., Giglio J. R., Novello J. C., Oliveira B., Marangoni S. (1995).Biochem. Mol. Biol. Int. 37(6):1047–1055Google Scholar
  39. Tsai, I. H., Chen, Y. H., Wang, Y. M., Liau, M. Y., and Lu, P. J., (2001). Arch. Biochem. Biophys. 387: 257–264Google Scholar
  40. Tsai, I. H., Wang, Y. M., Au, L. C., Ko, T. P., Chen, Y. H., and Chu, Y. F. (2000). Eur. J. Biochem. 267: 6684–6691Google Scholar
  41. Valentin, E., and Lambeau, G. (2000). Biochimie 82: 815–31, ReviewGoogle Scholar
  42. Warrell D. A., Looareesuwan S., Theakston R. D., Phillips R. E., Chanthavanich P., Viravan C., Supanaranond W., Karbwang J., Ho M., Hutton R. A. (1986). Am. J. Trop. Med. Hyg. 35(6):1235–1247Google Scholar
  43. World Health Organization, Progress in the Characterization of Venoms and Standarization of Antivenoms, WHO offset publication No. 58, (1981) GenevaGoogle Scholar
  44. Yamaguchi Y., Shimohigashi Y., Chiwata T., Tani A., Chijiwa T., Lomonte B., Ohno M. (1997). Biochem. Mol. Biol. Int. 43(1):19–26Google Scholar
  45. Yamakawa M., Nozaki M., Hokama Z. (1976) Edis. Animal Plant and Microbial Toxins Plenum Press, New York 97–109Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • V. L. Bonfim
    • 1
  • L. A. Ponce-Soto
    • 1
  • J. C. Novello
    • 1
  • S. Marangoni
    • 1
  1. 1.Department of Biochemistry, Institute of BiologyState University of CampinasCampinasBrazil

Personalised recommendations