The Protein Journal

, Volume 25, Issue 4, pp 250–256

Functional Contribution of Ca2+ and Mg2+ to the Intermolecular Interaction of Visinin-like Proteins

  • Feng-Fin Jheng
  • Likuan Wang
  • Liya Lee
  • Long-Sen Chang
OriginalPaper

The interaction of human visinin-like protein 1 (VILIP1) and visinin-like protein 3 (VILIP3) with divalent cations (Mg2+, Ca2+, Sr2+ and Ba2+) was explored using circular dichroism and fluorescence measurement. These results showed that the four cations each induced a different subtle change in the conformation of VILIPs. Moreover, VILIP1 and VILIP3 bound with Ca2+ or Mg2+ in a cooperative manner. Studies on the truncated mutants showed that the intact EF-3 and EF-4 were essential for the binding of VILIP1 with Ca2+ and Mg2+. Pull-down assay revealed that Ca2+ and Mg2+ enhanced the intermolecular interaction of VILIPs, and led to the formation of homo- and hetero-oligomer of VILIPs. Together with previous findings that Ca2+-dependent localization of VILIPs may be involved in the regulation of distinct cascades and deprivation of Ca2+-binding capacity of VILIPs did not completely eliminate their activity, it is likely to reflect that Mg2+-bound VILIPs may play a role in regulating the biological function of VILIPs in response to a concentration fluctuation of Ca2+ in cells.

Key words

Conformational change intermolecular interaction metal-binding VILIP 

Abbreviations:

ANS

8-Anilinonaphthalene-1-sulfonate

VILIP

Visinin-like protein

References

  1. Bernstein H. G., Baumann B., Danos P., Diekmann S., Bogerts B., Gundelfinger E. D., Braunewell K. H. (1999). J. Neurocytol. 28: 655–662CrossRefGoogle Scholar
  2. Boekhoff I., Braunewell K. H., Andreini I., Breer H., Gundelfinger E. D. (1997). Eur. J. Cell Biol. 72: 151–158Google Scholar
  3. Bourne Y., Dannenberg J., Pollmann V., Marchot P., Pongs O. (2001). J. Biol. Chem. 276: 11949–11955CrossRefGoogle Scholar
  4. Braunewell K. H., Gundelfinger E. D. (1999). Cell Tissue Res. 295: 1–12CrossRefGoogle Scholar
  5. Braunewell K. H., Brackmann M., Schaupp M., Spilker C., Anand R., Gundelfinger E. D. (2001a). J. Neurochem. 78: 1277–1286CrossRefGoogle Scholar
  6. Braunewell K. H., Riederer P., Spilker C., Gundelfinger E. D., Bogers B., Bernstein H. G. (2001b). Dementia Geriatr. Cogn. Disord. 12: 110–116CrossRefGoogle Scholar
  7. Burgoyne R. D., Weiss J. L. (2001). Biochem. J. 353: 1–12CrossRefGoogle Scholar
  8. Cox J. A., Durussel I., Comet M., Nef S., Nef P., Lenz S. E., Gundelfinger E. D. (1994). J. Biol. Chem. 269: 32807–32813Google Scholar
  9. Few A. P., Lautermilch N. J., Westenbroek R. E., Scheuer T., Catterall W. A. (2005). J. Neurosci. 25: 7071–7080CrossRefGoogle Scholar
  10. Flaherty K. M., Zozulya S., Stryer L., Mckay D. B. (1993). Cell 75: 709–716CrossRefGoogle Scholar
  11. Gonalez-Guerrico A. M., Jaffer Z. M., Page R. E., Braunewell K. H., Chernoff J., Klein-Szanto A. J. (2005). Oncogene 24: 2307–2316CrossRefGoogle Scholar
  12. Ladant D. (1995). J. Biol. Chem. 270: 3179–3185Google Scholar
  13. Lautermilch N. J., Few A. P., Scheuer T., Catterall W. A. (2005). J. Neurosci. 25: 7062–7070CrossRefGoogle Scholar
  14. Lin L., Jeanclos E. M., Treuil M., Braunewell K. H., Gundelfinger E. D., Anand R. (2002a). J. Biol. Chem. 277: 41872–41878CrossRefGoogle Scholar
  15. Lin L., Braunewell K. H., Gundelfinger E. D., Anand R. (2002b). Biochem. Biophys. Res. Commun. 296: 827–832CrossRefGoogle Scholar
  16. Lin Y. L., Lin S. R., Wu T. T., Chang L. S. (2004a). Biochem. Biophys. Res. Commun. 319: 720–724CrossRefGoogle Scholar
  17. Lin Y. L., Chen C. Y., Cheng C. P., Chang L. S. (2004b). Biochem. Biophys. Res. Commun. 321: 606–610CrossRefGoogle Scholar
  18. Mahloogi H., Gonzalez-Guerrico A. M., Lopez De Cicco R., Bassi D. E., Goodrow T., Braunewell K. H., Klein-Szanto A. J. (2003). Cancer Res. 63: 4997–5004Google Scholar
  19. Olshevskaya, E. A., Ermilov, A. N., Dizhoor, A. M. (1999). J. Biol. Chem. 274: 25583–25587CrossRefGoogle Scholar
  20. Osawa M., Dace A., Tong K. I., Valiveti A., Ikura M., Ames J. B. (2005). J. Biol. Chem. 280: 18008–18014CrossRefGoogle Scholar
  21. Ozawa T., Fukuda M., Nara M., Nakamura A., Komine Y., Kohama K., Umezawa Y. (2000). Biochemistry 39: 14495–14503CrossRefGoogle Scholar
  22. Peshenko I. V., Dizhoor A. M. (2004). J. Biol. Chem. 279:16903–16906CrossRefGoogle Scholar
  23. Spilker C., Gundelfinger E. D., Braunewell K. H. (2002). Biochim. Biophys. Acta 1600: 118–127Google Scholar
  24. Spilker C., Braunewell K. H. (2003). Mol. Cell. Neurosci. 24: 766–778CrossRefGoogle Scholar
  25. Vijay-Kumar S., Kumar V. D. (1999). Nat. Struct. Biol. 6: 80–88CrossRefGoogle Scholar
  26. Zhou W., Qian Y., Kunjilwar K., Pfaffinger P. J., Choe S. (2004). Neuron 41: 573–586CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Feng-Fin Jheng
    • 1
  • Likuan Wang
    • 1
  • Liya Lee
    • 1
  • Long-Sen Chang
    • 1
  1. 1.Institute of Biomedical SciencesNational Sun Yat-Sen UniversityKaohsiungTaiwan

Personalised recommendations