The Protein Journal

, Volume 24, Issue 2, pp 95–102

Purification and Characterization of Kininogens from Sheep Plasma

Article

Abstract

High molecular weight kininogen (HMWK) and low molecular weight kininogen (LMWK) have been purified from sheep ( Avis Arias) plasma in three steps involving ammonium sulphate precipitation, column chromatography on Sephacryl-300HR and ion exchange chromatography on DEAE cellulose. HMWK gave a single band on native and SDS-PAGE with a molecular weight corresponding to 280 kDa. Under reducing conditions purified HMWK was again resolved to a single band with molecular weight corresponding to 140 kDa indicative of its dimeric nature. LMWK was resolved into two isoforms named as LMWK1 and LMWK2, with an apparent molecular weight of 68 kDa. The yield of HMWK, LMWK1 and 2 was about 8.1, 5.63 and 10.65 respectively. HMWK, LMWK1 and 2 strongly inhibited activities of ficin and papain but not of trypsin, chymotrypsin and bromelain. Ki values estimated for HMWK with papain and ficin was 0.8 and 0.6 nM respectively. Ki values estimated for LMWK1 and 2 with papain were 2.40 and 2.00 nM respectively. Binding of HMWK, LMWK1 and 2 to activated papain were accompanied by pronounced changes in secondary and tertiary structure that are compatible with perturbations of environment of aromatic residues.

Keywords

Avis Arais cysteine proteinase characteristics kininogen purification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrett A.J., Rawlings N.D., Davies M.E., Machleidt W., Salvesan G., Turk V. (1986). In: Barrett, A. J., Salvesan,G. (eds), Proteinase Inhibitors, Elsevier Science PublishersBV, Amsterdam, New York. pp. 515-569Google Scholar
  2. Bjork, I., Alirksson, E., Ylinenjarvi, K. 1989Biochemistry2815681573CrossRefPubMedGoogle Scholar
  3. Donovan, J. R. (1969). In: leach, S. J. (ed.), Physical Principlesand Techniques of Protein Chemistry, Part A, Academic, New York, NY, pp. 101–-170Google Scholar
  4. Donovan, J.W. 1973Methods Enzymol27525548PubMedGoogle Scholar
  5. Drenth, J., Kalk, K.M., Swen, H.M. 1976Biochemistry1537313738CrossRefPubMedGoogle Scholar
  6. Hayashi, I., Takekazu, I., Kato, H., Iwanaga, S., Nakano, T., Oh-ishi, S. 1984Thromb Res.36509516CrossRefPubMedGoogle Scholar
  7. Henderson, P.J.F. 1972Biochem J.127321333PubMedGoogle Scholar
  8. Kato, H., Nagasawa, S., Iwanaga, S. 1981Methods Enzymol80172198PubMedGoogle Scholar
  9. Kitamura, N., Takagaki, Y., Furoto, S., Tanaka, T., Nawa, H., Nakanishi, S. 1983Nature (London)305345347CrossRefGoogle Scholar
  10. Laemmli, U.K. 1970Nature227680685PubMedGoogle Scholar
  11. Lindahl, P., Aliriksson, E., Jornvall, H., Björk, I. 1988Biochemistry2750745082CrossRefPubMedGoogle Scholar
  12. Lowry, O.H., Rosebrough, N.J., Farr, A.I., Randall, J.J. 1951J. Biol. chem.193265275PubMedGoogle Scholar
  13. Mashiko, H., Keni-chi, M., Hidenobo, T. 1998Comp Biochem Physio Part B120647656CrossRefGoogle Scholar
  14. Muller-Esterl, W., Dittman, B., Fritz, H., Lottspeich, F., and Henschen, A. (1982). In: Fritz, H., Back, N., Dietze, G. Dietze, G. and Heberland, G. L. (eds), Advances in Experimental Medicine and Biology, 156Akinins III, Plenum Press, New York, pp. 157-164Google Scholar
  15. Müller-Esterl, W., Iwanaga, S., Nakanishi, S. 1986TIBS11336339Google Scholar
  16. Nakanishi S., Ohukubo H., Nawa H., Kitamura N., Krrbeyama R., Ujihara M. (1983). Clin. Exp. Hypertens. A 997-1003Google Scholar
  17. Nawa, H., Kitamura, N., Hirose, T., Asai, M., Inayayama, S., Nakanishi, S. 1983Proc. Natl. Acad. Sci. U.S.A.809095PubMedGoogle Scholar
  18. Pagano, M., Esnard, F., Engler, R., Gauthier, F. 1984Biochem. J.228147155Google Scholar
  19. Pol, E., Olsson, L.S., Estrada, S., Prasthofer, W.T., Bjork, I. 1995Biochem. J.311275282PubMedGoogle Scholar
  20. Ramasarma, P.R., Rao, A.G.A., Rao, D. 1994Biochem. Biophys. Acta12483542Google Scholar
  21. Salevesen, G., Parkes, C., Abrahmson, M., Grubb, A., Barret, J.A. 1986Biochem. J.234429434PubMedGoogle Scholar
  22. Sasaki, M., Tanaguchi, K., Minahata, K. 1981J. Biochem.89169177PubMedGoogle Scholar
  23. Semba, U., Shibiya, Y., Okabi, H., Hayashi, I., Yamamoto, T. 2000Thrombosis Res.97481490CrossRefGoogle Scholar
  24. Stubbs, M.T., Laber, B., Bode, W., Huber, R., Lenanarcie, B., Turk, V. 1990EMBO J919391947PubMedGoogle Scholar
  25. Sueyoshi, T., Hashimoto, N., Kato, H., Hayashida, H., Miyata, T., Iwanaga, S. 1987J. Biol. Chem.26227682779PubMedGoogle Scholar
  26. Sueyoshi, T., Hara, T., Shimada, T., Kimura, M., Morita, T., Kato, H., Iwaanaga, S. 1988J. Biochem.104200206PubMedGoogle Scholar
  27. Takagaki, Y., Kitamura, N., Nakanishi, S. 1985J. Biol. Chem.26086018609PubMedGoogle Scholar
  28. Takeda, A., Kobayashi, S., Kaji, H., Aoki, Y., Saijiona, T. 1986J. Biochem. (Tokyo)99785791Google Scholar
  29. Turk, B., Stoka, V., Johansson, G., Cazzulo, J.J., Bjork, I. 1996FEBS Lett.391109112CrossRefPubMedGoogle Scholar
  30. Ylönen, A., Helin, J., Bogwald, J., Jaakola, A., Rinne, A., Kalkkinien, N. 2002Eur. J. Biochem.26926392646CrossRefPubMedGoogle Scholar
  31. Yumiko, T., Ohukobo, I. 1987Comp. Biochem. Physio.88429441CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Biochemistry, Faculty of Life scienceAligarh Muslim UniversityAligarhIndia

Personalised recommendations