Advertisement

The Protein Journal

, Volume 24, Issue 1, pp 21–26 | Cite as

Cloning and Characterization of the Xyn11A Gene from Lentinula edodes

  • Charles C. Lee
  • Dominic W. S. Wong
  • George H. Robertson
Article

Abstract

Hemicellulose represents a rich source of biomass that can be converted into useful chemical feedstocks. One of the main components of hemicellulose is xylan, a polymer of xylose residues. Xylanase enzymes that hydrolyze xylan are therefore of great commercial interest. We have cloned a gene (xyn11A) that encodes a 283-amino acid xylanase enzyme from the fungus Lentinula edodes. The enzyme has a pI of 4.6 and belongs to the highly conserved glycosyl hydrolase family 11. The xylanase gene was cloned into a Pichia pastoris expression vector that secretes active enzyme into both solid and liquid media. The optimal reaction conditions were at pH 4.5 and 50°C. The enzyme had a Km of 1.5 mg/ml and a Vmax of 2.1 mmol/min/mg. Xyn11A produced primarily xylobiose, xylotriose, and xylotetraose from a birchwood xylan substrate. This is the first report on the cloning of a hemicellulase gene from L. edodes.

Keywords

hemicellulose Lentinula edodes xylanase 

Abbreviation

Asp

aspartic acid

Avi

avicel

BeX

beechwood xylan

BiX

birchwood xylan

CMC

carboxymethyl cellulose

DNSA

dinitrosalicyclic acid

OSX

oat spelt xylan

PCR

polymerase chain reaction

RACE-PCR

rapid amplification of cDNA ends

RBB

remazol brilliant blue

RFU

relative fluroscence units

VAl

valine

Xyn

xylanase

YEPD

yeast extract-peptone-dextrose growth media

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajpai, P. 1997Adv. Appl. Microbiol.43141194Google Scholar
  2. Beg, Q. K., Kapoor, M., Mahajan, L., Hoondal, G. S. 2001Appl. Microbiol. Biotechnol.56326338CrossRefGoogle Scholar
  3. Biely, P., MacKenzie, C. R., Puls, J., Schneider, H. 1986Bio/technology4731733CrossRefGoogle Scholar
  4. Chandrakant, P., Bisaria, V. S. 1998Crit. Rev. Biotechnol.18295331Google Scholar
  5. Gomez-Gomez, E., Isabel, M., Roncero, G., Di Pietro, A., Hera, C. 2001Curr. Genet.40268275CrossRefGoogle Scholar
  6. Henrissat, B., Bairoch, A. 1996Biochem. J.316695696Google Scholar
  7. Johansson, G., Stahlberg, J., Lindeberg, G., Engstrom, A., Pettersson, G. 1989FEBS Lett.243389393CrossRefGoogle Scholar
  8. Kimura, T., Suzuki, H., Furuhashi, H., Aburatani, T., Morimoto, K., Karita, S., Sakka, K., Ohmiya, K. 2000Biosci. Biotechnol. Biochem.6427342738Google Scholar
  9. Ko, E. P., Akatsuka, H., Moriyama, H., Shinmyo, A., Hata, Y., Katsube, Y., Urabe, I., Okada, H. 1992Biochem. J.288117121Google Scholar
  10. Leatham, G. F. 1985Appl. Environ. Microbiol.50859867Google Scholar
  11. Lee, C. C., Wong, D. W., Robertson, G. H. 2001FEMS Microbiol. Lett.205355360CrossRefGoogle Scholar
  12. Miao, S., Ziser, L., Aebersold, R., Withers, S. G. 1994Biochemistry3370277032Google Scholar
  13. Nielsen, H., Engelbrecht, J., Brunak, S., von Heijne, G. 1997Protein Eng.1016CrossRefGoogle Scholar
  14. Prade, R. A. 1996Biotechnol. Genet. Eng. Rev.13101131Google Scholar
  15. Tilbeurgh, H. V., Tomme, P., Claeyssens, M., Bhikhabhai, R., Pettersson, G. 1986FEBS Lett.204223227CrossRefGoogle Scholar
  16. Torronen, A., Mach, R. L., Messner, R., Gonzalez, R., Kalkkinen, N., Harkki, A., Kubicek, C. P. 1992Biotechnology (N Y)1014611465CrossRefGoogle Scholar
  17. Wakarchuk, W. W., Campbell, R. L., Sung, W. L., Davoodi, J., Yaguchi, M. 1994Protein Sci.3467475Google Scholar
  18. Ward, O. P., Moo-Young, M. 1989Crit. Rev. Biotechnol.8237274Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Charles C. Lee
    • 1
    • 2
  • Dominic W. S. Wong
    • 1
  • George H. Robertson
    • 1
  1. 1.Western Regional Research Center, USDA-ARSAlbanyU.S.A.
  2. 2.USDA-ARS

Personalised recommendations