Skip to main content
Log in

Pharmacokinetics and pharmacodynamics of three oral formulations of curcumin in rats

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Curcumin (CUR) is a major component of turmeric Curcuma longa, which is often used in food or as a dietary supplement. The purpose of this preclinical study is to investigate the acute pharmacokinetic and pharmacodynamic (PK/PD) profiles of two commercially marketed CUR products (GNC and Vitamin Shoppe) and a CUR powder from Sigma in female rats. Plasma samples were collected at specific time points and analyzed for CUR and its metabolite curcumin-O-glucuronide. RNA was extracted from leukocytes and analyzed for the expression of Nrf2-mediated antioxidant genes Nrf2, Ho-1, and Nqo1 by qPCR as selected PD markers. CUR PK was characterized by a 2-compartment model (2CM) after intravenous (IV) or oral administrations. Compared to IV CUR, the absolute bioavailability (F) of CUR for GNC (GC) is 0.9%, Vitamin Shoppe (VC) is 0.6% and Sigma (SC) is 3.1%. Pharmacodynamically, all three formulations showed induction of antioxidant Nrf2, Ho-1 and Nqo1 gene expression in rat leucocytes. PK/PD modeling of CUR’s effect on antioxidant gene expression was well captured by an indirect response model. Physiologically based PK modeling and simulation using GastroPlus described the observed PK data reasonably well. In summary, our current study shows that the absolute oral bioavailability of the parent CUR was very low for all three formulations. However, despite the low CUR plasma concentrations, all three oral CUR formulations displayed PD response in the induction of Nrf2-mediated antioxidant genes, suggesting the potential of oral CUR contributing to the overall health beneficial effects of oral CUR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gupta SC, Kismali G, Aggarwal BB (2013) Curcumin, a component of turmeric: from farm to pharmacy. BioFactors 39(1):2–13

    PubMed  CAS  Google Scholar 

  2. Thangapazham RL, Puri A, Tele S, Blumenthal R, Maheshwari RK (2008) Evaluation of a nanotechnology-based carrier for delivery of curcumin in prostate cancer cells. Int J Oncol 32(5):1119–1123

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Howells LM, Mahale J, Sale S, McVeigh L, Steward WP, Thomas A, Brown K (2014) Translating curcumin to the clinic for lung cancer prevention: evaluation of the preclinical evidence for its utility in primary, secondary, and tertiary prevention strategies. J Pharmacol Exp Ther 350(3):483–494

    PubMed  Google Scholar 

  4. Wongcharoen W, Phrommintikul A (2009) The protective role of curcumin in cardiovascular diseases. Int J Cardiol 133(2):145–151

    PubMed  Google Scholar 

  5. Aggarwal BB (2010) Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr 21(30):173–199

    Google Scholar 

  6. Zhang D, Fu M, Gao S-H, Liu J-L (2013) Curcumin and diabetes: a systematic review. Evid Based Complement Alternat Med. https://doi.org/10.1155/2013/636053

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li N, Chen X, Liao J, Yang G, Wang S, Josephson Y, Han C, Chen J, Huang M-T, Yang CS (2002) Inhibition of 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters by tea and curcumin. Carcinogenesis 23(8):1307–1313

    PubMed  CAS  Google Scholar 

  8. Shehzad A, Shahzad R, Lee YS (2014) Curcumin: a potent modulator of multiple enzymes in multiple cancers. Enzymes 36:149–174

    PubMed  CAS  Google Scholar 

  9. Vareed SK, Kakarala M, Ruffin MT, Crowell JA, Normolle DP, Djuric Z, Brenner DE (2008) Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomark Prev 17(6):1411–1417

    CAS  Google Scholar 

  10. Pan MH, Huang TM, Lin JK (1999) Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27(4):486–494

    PubMed  CAS  Google Scholar 

  11. Metzler M, Pfeiffer E, Schulz SI, Dempe JS (2013) Curcumin uptake and metabolism. BioFactors 39(1):14–20

    PubMed  CAS  Google Scholar 

  12. Yang K-Y, Lin L-C, Tseng T-Y, Wang S-C, Tsai T-H (2007) Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. J Chromatogr B 853(1–2):183–189

    CAS  Google Scholar 

  13. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78(18):2081–2087

    PubMed  CAS  Google Scholar 

  14. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818

    PubMed  CAS  Google Scholar 

  15. Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer 41(13):1955–1968

    PubMed  CAS  Google Scholar 

  16. Lao CD, Ruffin MT, Normolle D, Heath DD, Murray SI, Bailey JM, Boggs ME, Crowell J, Rock CL, Brenner DE (2006) Dose escalation of a curcuminoid formulation. BMC Complement Altern Med 17(6):10

    Google Scholar 

  17. Baum L, Lam CWK, Cheung SK-K, Kwok T, Lui V, Tsoh J, Lam L, Leung V, Hui E, Ng C, Woo J, Chiu HFK, Goggins WB, Zee BC-Y, Cheng KF, Fong CYS, Wong A, Mok H, Chow MSS, Ho PC, Ip SP, Ho CS, Yu XW, Lai CYL, Chan M-H, Szeto S, Chan IHS, Mok V (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 28(1):110–113

    PubMed  Google Scholar 

  18. Cheng D, Li W, Wang L, Lin T, Poiani G, Wassef A, Hudlikar R, Ondar P, Brunetti L, Kong A-N (2019) Pharmacokinetics, pharmacodynamics, and PKPD modeling of curcumin in regulating antioxidant and epigenetic gene expression in healthy human volunteers. Mol Pharm. 16(5):1881–1889

    PubMed  CAS  Google Scholar 

  19. Gao Y, Li Z, Sun M, Li H, Guo C, Cui J, Li A, Cao F, Xi Y, Lou H, Zhai G (2010) Preparation, characterization, pharmacokinetics, and tissue distribution of curcumin nanosuspension with TPGS as stabilizer. Drug Dev Ind Pharm 36(10):1225–1234

    PubMed  CAS  Google Scholar 

  20. King CD, Rios GR, Green MD, Tephly TR (2000) UDP-glucuronosyltransferases. Curr Drug Metab 1(2):143–161

    PubMed  CAS  Google Scholar 

  21. Hoehle SI, Pfeiffer E, Metzler M (2007) Glucuronidation of curcuminoids by human microsomal and recombinant UDP-glucuronosyltransferases. Mol Nutr Food Res 51(8):932–938

    PubMed  CAS  Google Scholar 

  22. Balogun E, Hoque M, Gong P, Killeen E, Green CJ, Foresti R, Alam J, Motterlini R (2003) Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 371(Pt 3):887–895

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Boyanapalli SSS, Paredes-Gonzalez X, Fuentes F, Zhang C, Guo Y, Pung D, Saw CLL, Kong A-NT (2014) Nrf2 knockout attenuates the anti-inflammatory effects of phenethyl isothiocyanate and curcumin. Chem Res Toxicol 27(12):2036–2043

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Cao Y, Jusko WJ (2012) Applications of minimal physiologically-based pharmacokinetic models. J Pharmacokinet Pharmacodyn 39(6):711–723

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Li W, Yang H, Buckley B, Wang L, Kong A-N (2018) A Novel Triple Stage Ion Trap MS method validated for curcumin pharmacokinetics application: a comparison summary of the latest validated curcumin LC/MS methods. J Pharm Biomed Anal 15(156):116–124

    Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    PubMed  CAS  Google Scholar 

  27. Sun YN, Jusko WJ (1998) Transit compartments versus gamma distribution function to model signal transduction processes in pharmacodynamics. J Pharm Sci 87(6):732–737

    PubMed  CAS  Google Scholar 

  28. Piergies AA, Ruo TI, Jansyn EM, Belknap SM, Atkinson AJ (1987) Effect kinetics of N-acetylprocainamide-induced QT interval prolongation. Clin Pharmacol Ther 42(1):107–112

    PubMed  CAS  Google Scholar 

  29. Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21(4):457–478

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Mantzorou M, Pavlidou E, Vasios G, Tsagalioti E, Giaginis C (2018) Effects of curcumin consumption on human chronic diseases: a narrative review of the most recent clinical data. Phytother Res 32(6):957–975

    PubMed  CAS  Google Scholar 

  31. Li W, Su Z-Y, Guo Y, Zhang C, Wu R, Gao L, Zheng X, Du Z-Y, Zhang K, Kong A-N (2018) Curcumin derivative epigenetically reactivates Nrf2 antioxidative stress signaling in mouse prostate cancer TRAMP C1 cells. Chem Res Toxicol 31(2):88–96

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Storka A, Vcelar B, Klickovic U, Gouya G, Weisshaar S, Aschauer S, Bolger G, Helson L, Wolzt M (2015) Safety, tolerability and pharmacokinetics of liposomal curcumin in healthy humans. Int J Clin Pharmacol Ther 53(1):54–65

    PubMed  CAS  Google Scholar 

  33. Jamwal R (2018) Bioavailable curcumin formulations: a review of pharmacokinetic studies in healthy volunteers. J Integr Med 16(6):367–374

    PubMed  Google Scholar 

  34. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64(4):353–356

    PubMed  CAS  Google Scholar 

  35. Uzunović A, Vranić E (2007) Effect of magnesium stearate concentration on dissolution properties of ranitidine hydrochloride coated tablets. Bosn J Basic Med Sci 7(3):279–283

    PubMed  PubMed Central  Google Scholar 

  36. Alomar MJ (2014) Factors affecting the development of adverse drug reactions (Review article). Saudi Pharm J 22(2):83–94

    PubMed  Google Scholar 

  37. Setthacheewakul S, Mahattanadul S, Phadoongsombut N, Pichayakorn W, Wiwattanapatapee R (2010) Development and evaluation of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats. Eur J Pharm Biopharm 76(3):475–485

    PubMed  CAS  Google Scholar 

  38. Dulbecco P, Savarino V (2013) Therapeutic potential of curcumin in digestive diseases. World J Gastroenterol 19(48):9256–9270

    PubMed  PubMed Central  Google Scholar 

  39. Kesarwani K, Gupta R, Mukerjee A (2013) Bioavailability enhancers of herbal origin: an overview. Asian Pac J Trop Biomed 3(4):253–266

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Boyanapalli SSS, Huang Y, Su Z, Cheng D, Zhang C, Guo Y, Rao R, Androulakis IP, Kong A-N (2018) Pharmacokinetics and Pharmacodynamics of Curcumin in regulating anti-inflammatory and epigenetic gene expression. Biopharm Drug Dispos 39(6):289–297

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Trujillo J, Chirino YI, Molina-Jijón E, Andérica-Romero AC, Tapia E, Pedraza-Chaverrí J (2013) Renoprotective effect of the antioxidant curcumin: recent findings. Redox Biol 17(1):448–456

    Google Scholar 

  42. Ben Yehuda Greenwald M, Frušić-Zlotkin M, Soroka Y, Ben Sasson S, Bitton R, Bianco-Peled H, Kohen R (2017) Curcumin protects skin against UVB-induced cytotoxicity via the Keap1-Nrf2 pathway: the use of a microemulsion delivery system. Oxid Med Cell Longev 2017:5205471

    PubMed  PubMed Central  Google Scholar 

  43. Zeng C, Zhong P, Zhao Y, Kanchana K, Zhang Y, Khan ZA, Chakrabarti S, Wu L, Wang J, Liang G (2015) Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF-κB both in vitro and in vivo. J Mol Cell Cardiol 79:1–12

    PubMed  CAS  Google Scholar 

  44. Schnekenburger M, Diederich M (2015) Chapter 18-nutritional epigenetic regulators in the field of cancer: new avenues for chemopreventive approaches. In: Gray SG (ed) Epigenetic cancer therapy. Academic Press, Boston, pp 393–425

    Google Scholar 

  45. Bachmeier BE, Mirisola V, Romeo F, Generoso L, Esposito A, Dell’eva R, Blengio F, Killian PH, Albini A, Pfeffer U (2010) Reference profile correlation reveals estrogen-like trancriptional activity of Curcumin. Cell Physiol Biochem 26(3):471–482

    PubMed  CAS  Google Scholar 

  46. Sikora E, Scapagnini G, Barbagallo M (2010) Curcumin, inflammation, ageing and age-related diseases. Immun Ageing 7(1):1

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Sajithlal GB, Chithra P, Chandrakasan G (1998) Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats. Biochem Pharmacol 56(12):1607–1614

    PubMed  CAS  Google Scholar 

  48. Ravindran J, Prasad S, Aggarwal BB (2009) Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J 11(3):495–510

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Foteinou PT, Calvano SE, Lowry SF, Androulakis IP (2009) Modeling endotoxin-induced systemic inflammation using an indirect response approach. Math Biosci 217(1):27–42

    PubMed  CAS  Google Scholar 

  50. Gobeau N, Stringer R, De Buck S, Tuntland T, Faller B (2016) Evaluation of the GastroPlus™ advanced compartmental and transit (ACAT) model in early discovery. Pharm Res 33(9):2126–2139

    PubMed  CAS  Google Scholar 

  51. Parrott N, Lave T (2008) Applications of physiologically based absorption models in drug discovery and development. Mol Pharm 5(5):760–775

    PubMed  CAS  Google Scholar 

  52. Jones HM, Gardner IB, Watson KJ (2009) Modelling and PBPK simulation in drug discovery. AAPS J 11(1):155–166

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We thank all the members of Kong lab for their suggestions and helpful discussions in the preparation of this manuscript. This work was supported in part by institutional funds, R01AT007065 from the National Center for Complementary and Integrated Health (NCCIH) and the Office of Dietary Supplements (ODS), and R01AT009152 from the National Center for Complementary and Integrative Health (NCCIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ah-Ng Kong.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest associated with this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, W., Cheng, D. et al. Pharmacokinetics and pharmacodynamics of three oral formulations of curcumin in rats. J Pharmacokinet Pharmacodyn 47, 131–144 (2020). https://doi.org/10.1007/s10928-020-09675-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-020-09675-3

Keywords

Navigation