Advertisement

Computational framework for predictive PBPK-PD-Tox simulations of opioids and antidotes

  • Carrie GermanEmail author
  • Minu Pilvankar
  • Andrzej Przekwas
Original Paper

Abstract

The primary goal of this work was to develop a computational tool to enable personalized prediction of pharmacological disposition and associated responses for opioids and antidotes. Here we present a computational framework for physiologically-based pharmacokinetic (PBPK) modeling of an opioid (morphine) and an antidote (naloxone). At present, the model is solely personalized according to an individual’s mass. These PK models are integrated with a minimal pharmacodynamic model of respiratory depression induction (associated with opioid administration) and reversal (associated with antidote administration). The model was developed and validated on human data for IV administration of morphine and naloxone. The model can be further extended to consider different routes of administration, as well as to study different combinations of opioid receptor agonists and antagonists. This work provides the framework for a tool that could be used in model-based management of pain, pharmacological treatment of opioid addiction, appropriate use of antidotes for opioid overdose and evaluation of abuse deterrent formulations.

Keywords

Opioids PBPK Modeling Pharmacodynamics Naloxone 

Notes

Acknowledgements

This research was funded internally by CFD Research Corporation’s IR&D. The authors greatly appreciate the assistance of Dr. ZJ Chen and Mr. Alex Boyer in assisting with model development and implementation of our model in an online format, respectively. We also thank Ms. Lindsey Maurel for her contribution of artwork. We would also like to extend our gratitude to the reviewers for providing keen insights and suggestions with which the model was able to be improved.

Supplementary material

10928_2019_9648_MOESM1_ESM.pdf (119 kb)
Supplementary material 1 (PDF 118 kb)

References

  1. 1.
    Skolnick P (2018) The opioid epidemic: crisis and solutions. Annu Rev Pharmacol Toxicol 58:143–159.  https://doi.org/10.1146/annurev-pharmtox-010617-052534 CrossRefGoogle Scholar
  2. 2.
    Volkow ND, McLellan AT (2016) Opioid abuse in chronic pain—misconceptions and mitigation strategies. N Engl J Med 374:1253–1263.  https://doi.org/10.1056/NEJMra1507771 CrossRefGoogle Scholar
  3. 3.
    Mendelson J, Flower K, Pletcher M, Galloway GP (2008) Addiction to prescription opioids: characteristics of the emerging epidemic and treatment with buprenorphine. Exp Clin Psychopharmacol 16:435–441.  https://doi.org/10.1037/a0013637 CrossRefGoogle Scholar
  4. 4.
    McGregor AJ (2018) The opioid epidemic: overcoming challenges by using a sex and gender lens. Clin Ther 40:188–189.  https://doi.org/10.1016/j.clinthera.2018.01.007 CrossRefGoogle Scholar
  5. 5.
    Vashishtha D, Mittal ML, Werb D (2017) The North American opioid epidemic: current challenges and a call for treatment as prevention. Harm Reduct J 14:7.  https://doi.org/10.1186/s12954-017-0135-4 CrossRefGoogle Scholar
  6. 6.
    Cascone S, Lamberti G, Piazza O, Abbiati RA, Manca D (2018) A physiologically-based model to predict individual pharmacokinetics and pharmacodynamics of remifentanil. Eur J Pharm Sci 111:20–28.  https://doi.org/10.1016/j.ejps.2017.09.028 CrossRefGoogle Scholar
  7. 7.
    Kalluri HV, Zhang H, Caritis SN, Venkataramanan R (2017) A physiologically based pharmacokinetic modelling approach to predict buprenorphine pharmacokinetics following intravenous and sublingual administration. Br J Clin Pharmacol 83:2458–2473.  https://doi.org/10.1111/bcp.13368 CrossRefGoogle Scholar
  8. 8.
    Lötsch J (2005) Pharmacokinetic-pharmacodynamic modeling of opioids. J Pain Symptom Manag 29:S90–103.  https://doi.org/10.1016/j.jpainsymman.2005.01.012 CrossRefGoogle Scholar
  9. 9.
    Shankaran H, Adeshina F, Teeguarden JG (2013) Physiologically-based pharmacokinetic model for Fentanyl in support of the development of provisional advisory levels. Toxicol Appl Pharmacol 273:464–476.  https://doi.org/10.1016/j.taap.2013.05.024 CrossRefGoogle Scholar
  10. 10.
    Yassen A, Olofsen E, van Dorp E, Sarton E, Teppema L, Danhof M, Dahan A (2007) Mechanism-based pharmacokinetic-pharmacodynamic modelling of the reversal of buprenorphine-induced respiratory depression by naloxone. Clin Pharmacokinet 46:965–980.  https://doi.org/10.2165/00003088-200746110-00004 CrossRefGoogle Scholar
  11. 11.
    Ahmed S, Graupner M, Gutkin B (2009) Computational approaches to the neurobiology of drug addiction. Pharmacopsychiatry 42:S144–S152.  https://doi.org/10.1055/s-0029-1216345 CrossRefGoogle Scholar
  12. 12.
    Ball K, Bouzom F, Scherrmann J-M, Walther B, Declèves X (2012) Development of a physiologically based pharmacokinetic model for the rat central nervous system and determination of an in vitro–in vivo scaling methodology for the blood–brain barrier permeability of two transporter substrates, morphine and oxycodone. J Pharm Sci 101:4277–4292.  https://doi.org/10.1002/jps.23266 CrossRefGoogle Scholar
  13. 13.
    Yamamoto Y, Välitalo PA, Huntjens DR, Proost JH, Vermeulen A, Krauwinkel W, Beukers MW, van den Berg D-J, Hartman R, Wong YC, Danhof M, van Hasselt JGC, de Lange ECM (2017) Predicting drug concentration-time profiles in multiple CNS compartments using a comprehensive physiologically-based pharmacokinetic model. CPT Pharmacomet Syst Pharmacol 6:765–777.  https://doi.org/10.1002/psp4.12250 CrossRefGoogle Scholar
  14. 14.
    Borjkhani M, Bahrami F, Janahmadi M (2018) Computational modeling of opioid-induced synaptic plasticity in hippocampus. PLoS ONE 13:e0193410.  https://doi.org/10.1371/journal.pone.0193410 CrossRefGoogle Scholar
  15. 15.
    de Carvalho LAV, de Azevedo LO (2000) A model for the cellular mechanisms of morphine tolerance and dependence. Math Comput Model 32:933–953.  https://doi.org/10.1016/S0895-7177(00)00180-1 CrossRefGoogle Scholar
  16. 16.
    Christie MJ (2008) Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol 154:384–396.  https://doi.org/10.1038/bjp.2008.100 CrossRefGoogle Scholar
  17. 17.
    Dumas EO, Pollack GM (2008) Opioid tolerance development: a pharmacokinetic/pharmacodynamic perspective. AAPS J 10:537.  https://doi.org/10.1208/s12248-008-9056-1 CrossRefGoogle Scholar
  18. 18.
    Evans WE, Schentag JJ, Jusko WJ (1992) Applied pharmacokinetics: principles of therapeutic drug monitoring. Appl Ther Incorp 1:1.  https://doi.org/10.1002/bdd.2510030315 Google Scholar
  19. 19.
    Peters SA (2012) Physiologically-based pharmacokinetic (PBPK) modeling and simulations: principles, methods, and applications in the pharmaceutical industry. Wiley, New YorkCrossRefGoogle Scholar
  20. 20.
    Thompson MD, Beard DA (2011) Development of appropriate equations for physiologically based pharmacokinetic modeling of permeability-limited and flow-limited transport. J Pharmacokinet Pharmacodyn 38:405–421.  https://doi.org/10.1007/s10928-011-9200-x CrossRefGoogle Scholar
  21. 21.
    Zhang F, Tagen M, Throm S, Mallari J, Miller L, Guy RK, Dyer MA, Williams RT, Roussel MF, Nemeth K, Zhu F, Zhang J, Lu M, Panetta JC, Boulos N, Stewart CF (2011) Whole-body physiologically based pharmacokinetic model for nutlin-3a in mice after intravenous and oral administration. Drug Metab Dispos Biol Fate Chem 39:15–21.  https://doi.org/10.1124/dmd.110.035915 CrossRefGoogle Scholar
  22. 22.
    Gaohua L, Neuhoff S, Johnson TN, Rostami-Hodjegan A, Jamei M (2016) Development of a permeability-limited model of the human brain and cerebrospinal fluid (CSF) to integrate known physiological and biological knowledge: estimating time varying CSF drug concentrations and their variability using in vitro data. Drug Metab Pharmacokinet 31:224–233.  https://doi.org/10.1016/j.dmpk.2016.03.005 CrossRefGoogle Scholar
  23. 23.
    Berezhkovskiy LM (2004) Volume of distribution at steady state for a linear pharmacokinetic system with peripheral elimination. J Pharm Sci 93:1628–1640.  https://doi.org/10.1002/jps.20073 CrossRefGoogle Scholar
  24. 24.
    Poulin P, Krishnan K (1995) A biologically-based algorithm for predicting human tissue: blood partition coefficients of organic chemicals. Hum Exp Toxicol 14:273–280.  https://doi.org/10.1177/096032719501400307 CrossRefGoogle Scholar
  25. 25.
    Poulin P, Theil F-P (2000) A priori prediction of tissue:plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci 89:16–35.  https://doi.org/10.1002/(SICI)1520-6017(200001)89:1%3c16:AID-JPS3%3e3.0.CO;2-E CrossRefGoogle Scholar
  26. 26.
    Löscher W, Potschka H (2005) Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2:86–98.  https://doi.org/10.1602/neurorx.2.1.86 CrossRefGoogle Scholar
  27. 27.
    Chaves C, Remião F, Cisternino S, Declèves X (2017) Opioids and the blood-brain barrier: a dynamic interaction with consequences on drug disposition in brain. Curr Neuropharmacol 15:1156–1173.  https://doi.org/10.2174/1570159X15666170504095823 CrossRefGoogle Scholar
  28. 28.
    Mercer SL, Coop A (2011) Opioid analgesics and P-glycoprotein efflux transporters: a potential systems-level contribution to analgesic tolerance. Curr Top Med Chem 11:1157–1164.  https://doi.org/10.2174/156802611795371288 CrossRefGoogle Scholar
  29. 29.
    Stain-Texier F, Boschi G, Sandouk P, Scherrmann J-M (1999) Elevated concentrations of morphine 6-beta-D-glucuronide in brain extracellular fluid despite low blood–brain barrier permeability. Br J Pharmacol 128:917–924.  https://doi.org/10.1038/sj.bjp.0702873 CrossRefGoogle Scholar
  30. 30.
    Bryan J (2018) Even today, morphine remains a popular opioid analgesic for cancer-related pain. Lung Cancer 15:05.  https://doi.org/10.1111/bcp.12008 Google Scholar
  31. 31.
    Mayo Clinic Staff (2017) Pain medications after surgery. In: Mayo Clin. http://www.mayoclinic.org/pain-medications/art-20046452
  32. 32.
    Emoto C, Fukuda T, Johnson T, Neuhoff S, Sadhasivam S, Vinks AA (2017) Characterization of contributing factors to variability in morphine clearance through PBPK modeling implemented with OCT1 transporter. CPT Pharmacomet Syst Pharmacol 6:110–119.  https://doi.org/10.1002/psp4.12144 CrossRefGoogle Scholar
  33. 33.
    Smith HS (2009) Opioid metabolism. Mayo Clin Proc 84:613–624.  https://doi.org/10.1016/S0025-6196(11)60750-7 CrossRefGoogle Scholar
  34. 34.
    Soleimanpour H, Safari S, Shahsavari Nia K, Sanaie S, Alavian SM (2016) Opioid drugs in patients with liver disease: a systematic review. Hepat Mon.  https://doi.org/10.5812/hepatmon.32636 Google Scholar
  35. 35.
    Wahlström A, Winblad B, Bixo M, Rane A (1988) Human brain metabolism of morphine and naloxone. Pain 35:121–127.  https://doi.org/10.1016/0304-3959(88)90219-9 CrossRefGoogle Scholar
  36. 36.
    Yamada H, Ishii K, Ishii Y, Ieiri I, Nishio S, Morioka T, Oguri K (2003) Formation of highly analgesic morphine-6-glucuronide following physiologic concentration of morphine in human brain. J Toxicol Sci 28:395–401.  https://doi.org/10.2131/jts.28.395 CrossRefGoogle Scholar
  37. 37.
    McQuay H, Moore R (1997) Opioid problems, and morphine metabolism and excretion. The Pharmacology of Pain. Springer, New York, pp 335–360CrossRefGoogle Scholar
  38. 38.
    NIH National Cancer Institute (2018) Naloxone (Code C62054). In: NCI Thesaurus. https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=NCI_Thesaurus&code=C62054
  39. 39.
    NIH US National Library of Medicine (2016) Naloxone. In: TOXNET. https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+3279
  40. 40.
    Drugbank (2018) Naloxone. In: Drugbank. https://www.drugbank.ca/drugs/DB01183
  41. 41.
    Mistry M, Houston JB (1987) Glucuronidation in vitro and in vivo. Comparison of intestinal and hepatic conjugation of morphine, naloxone, and buprenorphine. Drug Metab Dispos Biol Fate Chem 15:710–717Google Scholar
  42. 42.
    Van Dorp E, Yassen A, Sarton E, Romberg R, Olofsen E, Danhof M, Dahan A (2006) Naloxone reversal of buprenorphine-induced respiratory depression. Anesthesiol J Am Soc Anesthesiol 105:51–57Google Scholar
  43. 43.
    Olofsen E, van Dorp E, Teppema L, Aarts L, Smith TW, Dahan A, Sarton E (2010) Naloxone reversal of morphine- and morphine-6-glucuronide-induced respiratory depression in healthy volunteers—a mechanism-based pharmacokinetic–pharmacodynamic modeling study. Anesthesiol J Am Soc Anesthesiol 112:1417–1427.  https://doi.org/10.1097/ALN.0b013e3181d5e29d Google Scholar
  44. 44.
    Cassel JA, Daubert JD, DeHaven RN (2005) [3H]Alvimopan binding to the μ opioid receptor: comparative binding kinetics of opioid antagonists. Eur J Pharmacol 520:29–36.  https://doi.org/10.1016/j.ejphar.2005.08.008 CrossRefGoogle Scholar
  45. 45.
    Wilkerson P, Zhou X, Przekwas A, Buhrman J, Cheng H (2009) Virtual body generator for anthropometry and physiology based modeling. SAE Technical Paper. https://www.sae.org/publications/technical-papers/content/2009-01-2280/
  46. 46.
    Wilkerson P, Pzrekwas A (2007) Integrated modeling framework for anthropometry and physiology virtual body. CFD Research Corp, Huntsville AL. https://apps.dtic.mil/dtic/tr/fulltext/u2/a472630.pdf
  47. 47.
    Müller LO, Toro EF (2014) Enhanced global mathematical model for studying cerebral venous blood flow. J Biomech 47:3361–3372.  https://doi.org/10.1016/j.jbiomech.2014.08.005 CrossRefGoogle Scholar
  48. 48.
    Lötsch J, Skarke C, Schmidt H, Liefhold J, Geisslinger G (2002) Pharmacokinetic modeling to predict morphine and morphine-6-glucuronide plasma concentrations in healthy young volunteers. Clin Pharmacol Ther 72:151–162.  https://doi.org/10.1067/mcp.2002.126172 CrossRefGoogle Scholar
  49. 49.
    Dershwitz M, Walsh JL, Morishige RJ, Connors PM, Rubsamen RM, Shafer SL, Rosow CE (2000) Pharmacokinetics and pharmacodynamics of inhaled versus intravenous morphine in healthy volunteers. Anesthesiol J Am Soc Anesthesiol 93:619–628Google Scholar
  50. 50.
    Bouw R, Ederoth P, Lundberg J, Ungerstedt U, Nordström CH, Hammarlund-Udenaes M (2001) Increased blood–brain barrier permeability of morphine in a patient with severe brain lesions as determined by microdialysis. Acta Anaesthesiol Scand 45:390–392.  https://doi.org/10.1034/j.1399-6576.2001.045003390.x CrossRefGoogle Scholar
  51. 51.
    Fryar CD, Kruszan-Moran D, Gu Q, Ogden CL (2018) Mean body weight, weight, waist circumference, and body mass index among adults: United States, 1999–2000 through 2015–2016. https://www.cdc.gov/nchs/data/nhsr/nhsr122-508.pdf
  52. 52.
    Ederoth P, Tunblad K, Bouw R, Johan C, Lundberg F, Ungerstedt U, Nordström CH, Hammarlund-Udenaes M (2004) Blood–brain barrier transport of morphine in patients with severe brain trauma. Br J Clin Pharmacol 57:427–435.  https://doi.org/10.1046/j.1365-2125.2003.02032.x CrossRefGoogle Scholar
  53. 53.
    Aitkenhead AR, Derbyshire DR, Pinnock CA, Achola K, Smith G (1984) Pharmacokinetics of intravenous naloxone in healthy volunteers. Anesthesiol J Am Soc Anesthesiol 61:A381–A381Google Scholar
  54. 54.
    McDonald R, Lorch U, Woodward J, Bosse B, Dooner H, Mundin G, Smith K, Strang J (2017) Pharmacokinetics of concentrated naloxone nasal spray for opioid overdose reversal: Phase I healthy volunteer study. Addiction 113:484–493.  https://doi.org/10.1111/add.14033 CrossRefGoogle Scholar
  55. 55.
    Unbound Medicine (2018) morphine | Davis’s Drug Guide. https://www.drugguide.com/ddo/view/Davis-Drug-Guide/51518/all/morphine
  56. 56.
    Carleton BC, Cipolle RJ, Larson SD, Canafax DM (1991) Method for evaluating drip-rate accuracy of intravenous flow-regulating devices. Am J Hosp Pharm 48:2422–2426.  https://doi.org/10.1093/ajhp/48.11.2422 Google Scholar
  57. 57.
    Rooker JC, Gorard DA (2007) Errors of intravenous fluid infusion rates in medical inpatients. Clin Med Lond Engl 7:482–485.  https://doi.org/10.7861/clinmedicine.7-5-482 CrossRefGoogle Scholar
  58. 58.
    Hoare SRJ, Pierre N, Moya AG, Larson B (2018) Kinetic operational models of agonism for G-protein-coupled receptors. J Theor Biol 446:168–204.  https://doi.org/10.1016/j.jtbi.2018.02.014 CrossRefGoogle Scholar
  59. 59.
    Lane JR, May LT, Parton RG, Sexton PM, Christopoulos A (2017) A kinetic view of GPCR allostery and biased agonism. Nat Chem Biol 13:929–937.  https://doi.org/10.1038/nchembio.2431 CrossRefGoogle Scholar
  60. 60.
    Strasser A, Wittmann H-J, Seifert R (2017) Binding kinetics and pathways of ligands to GPCRs. Trends Pharmacol Sci 38:717–732.  https://doi.org/10.1016/j.tips.2017.05.005 CrossRefGoogle Scholar
  61. 61.
    Ben-Tal A, Smith JC (2008) A model for control of breathing in mammals: coupling neural dynamics to peripheral gas exchange and transport. J Theor Biol 251:480–497.  https://doi.org/10.1016/j.jtbi.2007.12.018 CrossRefGoogle Scholar
  62. 62.
    Ursino M, Magosso E, Avanzolini G (2001) An integrated model of the human ventilatory control system: the response to hypercapnia. Clin Physiol Oxf Engl 21:447–464.  https://doi.org/10.1046/j.1365-2281.2001.00349.x CrossRefGoogle Scholar
  63. 63.
    Boyer EW (2012) Management of opioid analgesic overdose. N Engl J Med 367:146–155.  https://doi.org/10.1056/NEJMra1202561 CrossRefGoogle Scholar
  64. 64.
    Loimer N, Schmid R, Grünberger J, Linzmayer L (1990) Naloxone induces miosis in normal subjects. Psychopharmacology 101:282–283.  https://doi.org/10.1007/BF02244141 CrossRefGoogle Scholar
  65. 65.
    Zakaria Z, Badhan R (2018) Development of a region-specific physiologically based pharmacokinetic brain model to assess hippocampus and frontal cortex pharmacokinetics. Pharmaceutics 10:14.  https://doi.org/10.3390/pharmaceutics10010014 CrossRefGoogle Scholar
  66. 66.
    Jamei M, Bajot F, Neuhoff S, Barter Z, Yang J, Rostami-Hodjegan A, Rowland-Yeo K (2014) A mechanistic framework for in vitro–in vivo extrapolation of liver membrane transporters: prediction of drug–drug interaction between rosuvastatin and cyclosporine. Clin Pharmacokinet 53:73–87.  https://doi.org/10.1007/s40262-013-0097-y CrossRefGoogle Scholar
  67. 67.
    Fishman RA (1992) Cerebrospinal fluid in diseases of the nervous system. WB Saunders company, PhiladelphiaGoogle Scholar
  68. 68.
    Reiber H (2003) Proteins in cerebrospinal fluid and blood: barriers, CSF flow rate and source-related dynamics. Restor Neurol Neurosci 21:79–96Google Scholar
  69. 69.
    Orešković D, Klarica M (2010) The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev 64:241–262.  https://doi.org/10.1016/j.brainresrev.2010.04.006 CrossRefGoogle Scholar
  70. 70.
    May C, Kaye J, Atack JR, Schapiro MB, Friedland RP, Rapoport SI (1990) Cerebrospinal fluid production is reduced in healthy aging. Neurology 40:500–500.  https://doi.org/10.1212/wnl.40.3_part_1.500 CrossRefGoogle Scholar
  71. 71.
    Kroin JS, Ali A, York M, Penn RD (1993) The distribution of medication along the spinal canal after chronic intrathecal administration. Neurosurgery 33:226–230.  https://doi.org/10.1227/00006123-199308000-00007 CrossRefGoogle Scholar
  72. 72.
    Edsbagge M, Tisell M, Jacobsson L, Wikkelso C (2004) Spinal CSF absorption in healthy individuals. Am J Physiol-Regul Integr Comp Physiol 287:R1450–R1455.  https://doi.org/10.1152/ajpregu.00215.2004 CrossRefGoogle Scholar
  73. 73.
    Veening JG, Barendregt HP (2010) The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid: a review. Cerebrospinal Fluid Res 7:1.  https://doi.org/10.1186/1743-8454-7-1 CrossRefGoogle Scholar
  74. 74.
    Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC (2013) The blood-brain barrier: an engineering perspective. Front Neuroeng 6:7.  https://doi.org/10.3389/fneng.2013.00007 CrossRefGoogle Scholar
  75. 75.
    McNamara PJ, Leggas M (2009) Chapter 7—drug distribution. In: Hacker M, Messer W, Bachmann K (eds) Pharmacology. Academic Press, San Diego, pp 113–129CrossRefGoogle Scholar
  76. 76.
    Morrish GA, Foster DJR, Somogyi AA (2006) Differential in vitro inhibition of M3G and M6G formation from morphine by (R)- and (S)-methadone and structurally related opioids. Br J Clin Pharmacol 61:326–335.  https://doi.org/10.1111/j.1365-2125.2005.02573.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CFD Research Corp.HuntsvilleUSA
  2. 2.School of Chemical EngineeringOklahoma State UniversityStillwaterUSA

Personalised recommendations