Advertisement

Drug–physiology interaction and its influence on the QT prolongation-mechanistic modeling study

  • Barbara Wiśniowska
  • Sebastian Polak
Original Paper

Abstract

The current study is an example of drug–disease interaction modeling where a drug induces a condition which can affect the pharmacodynamics of other concomitantly taken drugs. The electrophysiological effects of hypokaliemia and heart rate changes induced by the antiasthmatic drugs were simulated with the use of the cardiac safety simulator. Biophysically detailed model of the human cardiac physiology—ten Tusscher ventricular cardiomyocyte cell model—was employed to generate pseudo-ECG signals and QTc intervals for 44 patients from four clinical studies. Simulated and observed mean QTc values with standard deviation (SD) for each reported study point were compared and differences were analyzed with Student’s t test (α = 0.05). The simulated results reflected the QTc interval changes measured in patients, as well as their clinically observed interindividual variability. The QTc interval changes were highly correlated with the change in plasma potassium both in clinical studies and in the simulations (Pearson’s correlation coefficient > 0.55). The results suggest that the modeling and simulation approach could provide valuable quantitative insight into the cardiological effect of the potassium and heart rate changes caused by electrophysiologically inactive, non-cardiological drugs. This allows to simulate and predict the joint effect of several risk factors for QT prolongation, e.g., drug-dependent QT prolongation due to the ion channels inhibition and the current patient physiological conditions.

Keywords

Plasma potassium QT prolongation Modeling and simulation Drug–disease interaction 

References

  1. 1.
    Divo MJ, Martinez CH, Mannino DM (2014) Ageing and the epidemiology of multimorbidity. Eur Respir J 44:1055–1068.  https://doi.org/10.1183/09031936.00059814 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    WHO Facts about ageing. In: WHO. http://www.who.int/ageing/about/facts/en/. Accessed 6 Oct 2017
  3. 3.
    Payne RA (2016) The epidemiology of polypharmacy. Clin Med 16:465–469.  https://doi.org/10.7861/clinmedicine.16-5-465 CrossRefGoogle Scholar
  4. 4.
    Moen J, Antonov K, Larsson CA, Lindblad U, Nilsson JLG, Råstam L, Ring L (2009) Factors associated with multiple medication use in different age groups. Ann Pharmacother 43:1978–1985.  https://doi.org/10.1345/aph.1M354 CrossRefPubMedGoogle Scholar
  5. 5.
    St. Louis EK (2009) Truly “rational” polytherapy: maximizing efficacy and minimizing drug interactions, drug load, and adverse effects. Curr Neuropharmacol 7:96–105.  https://doi.org/10.2174/157015909788848929 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dechanont S, Maphanta S, Butthum B, Kongkaew C (2014) Hospital admissions/visits associated with drug-drug interactions: a systematic review and meta-analysis. Pharmacoepidemiol Drug Saf 23:489–497.  https://doi.org/10.1002/pds.3592 CrossRefPubMedGoogle Scholar
  7. 7.
    Astrand B, Astrand E, Antonov K, Petersson G (2006) Detection of potential drug interactions—a model for a national pharmacy register. Eur J Clin Pharmacol 62:749–756.  https://doi.org/10.1007/s00228-006-0143-x CrossRefPubMedGoogle Scholar
  8. 8.
    McDonnell PJ, Jacobs MR (2002) Hospital admissions resulting from preventable adverse drug reactions. Ann Pharmacother 36:1331–1336.  https://doi.org/10.1345/aph.1A333 CrossRefPubMedGoogle Scholar
  9. 9.
    Shad MU, Marsh C, Preskorn SH (2001) The economic consequences of a drug-drug interaction. J Clin Psychopharmacol 21:119–120CrossRefPubMedGoogle Scholar
  10. 10.
    Hennessy S, Leonard CE, Gagne JJ, Flory JH, Han X, Brensinger CM, Bilker WB (2016) Pharmacoepidemiologic methods for studying the health effects of drug–drug interactions. Clin Pharmacol Ther 99:92–100.  https://doi.org/10.1002/cpt.277 CrossRefPubMedGoogle Scholar
  11. 11.
    Lorberbaum T, Sampson KJ, Chang JB, Iyer V, Woosley RL, Kass RS, Tatonetti NP (2016) Coupling data mining and laboratory experiments to discover drug interactions causing QT prolongation. J Am Coll Cardiol 68:1756–1764.  https://doi.org/10.1016/j.jacc.2016.07.761 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lau MHM, Tenney JW (2017) Evaluation of drug–disease interactions and their association with unplanned hospital readmission utilizing STOPP Version 2 criteria. Geriatrics 2:33.  https://doi.org/10.3390/geriatrics2040033 CrossRefGoogle Scholar
  13. 13.
    Schenker S, Martin RR, Hoyumpa AM (1999) Antecedent liver disease and drug toxicity. J Hepatol 31:1098–1105CrossRefGoogle Scholar
  14. 14.
    Nolin TD, Naud J, Leblond FA, Pichette V (2008) Emerging evidence of the impact of kidney disease on drug metabolism and transport. Clin Pharmacol Ther 83:898–903.  https://doi.org/10.1038/clpt.2008.59 CrossRefPubMedGoogle Scholar
  15. 15.
    Wang I, Hopper I (2014) Celiac disease and drug absorption: implications for cardiovascular therapeutics. Cardiovasc Ther 32:253–256.  https://doi.org/10.1111/1755-5922.12094 CrossRefPubMedGoogle Scholar
  16. 16.
    Tran TH, Smith C, Mangione RA (2013) Drug absorption in celiac disease. Am J Health-Syst Pharm 70:2199–2206.  https://doi.org/10.2146/ajhp120689 CrossRefPubMedGoogle Scholar
  17. 17.
    Aitken AE, Richardson TA, Morgan ET (2006) Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol 46:123–149.  https://doi.org/10.1146/annurev.pharmtox.46.120604.141059 CrossRefPubMedGoogle Scholar
  18. 18.
    Schmitt C, Kuhn B, Zhang X, Kivitz AJ, Grange S (2011) Disease–drug–drug interaction involving tocilizumab and simvastatin in patients with rheumatoid arthritis. Clin Pharmacol Ther 89:735–740.  https://doi.org/10.1038/clpt.2011.35 CrossRefPubMedGoogle Scholar
  19. 19.
    Sanaee F, Clements JD, Waugh AWG, Fedorak RN, Lewanczuk R, Jamali F (2011) Drug–disease interaction: crohn’s disease elevates verapamil plasma concentrations but reduces response to the drug proportional to disease activity. Br J Clin Pharmacol 72:787–797.  https://doi.org/10.1111/j.1365-2125.2011.04019.x CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lindblad CI, Hanlon JT, Gross CR, Sloane RJ, Pieper CF, Hajjar ER, Ruby CM, Schmader KE (2006) Clinically important drug-disease interactions and their prevalence in older adults. Clin Ther 28:1133–1143.  https://doi.org/10.1016/j.clinthera.2006.08.006 CrossRefPubMedGoogle Scholar
  21. 21.
    Casiero D, Frishman WH (2006) Cardiovascular complications of eating disorders. Cardiol Rev 14:227–231.  https://doi.org/10.1097/01.crd.0000216745.96062.7c CrossRefPubMedGoogle Scholar
  22. 22.
    Shojaie M, Eshraghian A (2008) Primary hypothyroidism presenting with Torsades de pointes type tachycardia: a case report. Cases J 1:298.  https://doi.org/10.1186/1757-1626-1-298 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ker J (2012) Thyroxine and cardiac electrophysiology—a forgotten physiological duo? Thyr Res 5:8.  https://doi.org/10.1186/1756-6614-5-8 CrossRefGoogle Scholar
  24. 24.
    Lazzerini PE, Acampa M, Guideri F, Capecchi PL, Campanella V, Morozzi G, Galeazzi M, Marcolongo R, Laghi-Pasini F (2004) Prolongation of the corrected QT interval in adult patients with anti-Ro/SSA-positive connective tissue diseases. Arthritis Rheum 50:1248–1252.  https://doi.org/10.1002/art.20130 CrossRefPubMedGoogle Scholar
  25. 25.
    Franjic L, House SL, Vitkovitsky I, Halcomb SE (2012) QTc prolongation is associated with hypokalemia and hypocalcemia in emergency department patients. Conference abstracts and posters. Paper 12Google Scholar
  26. 26.
    Huang TC, Cecchin FC, Mahoney P, Portman MA (2000) Corrected QT interval (QTc) prolongation and syncope associated with pseudohypoparathyroidism and hypocalcemia. J Pediatr 136:404–407.  https://doi.org/10.1067/mpd.2000.103447 CrossRefPubMedGoogle Scholar
  27. 27.
    Kallergis EM, Goudis CA, Simantirakis EN, Kochiadakis GE, Vardas PE (2012) Mechanisms, risk factors, and management of acquired long QT syndrome: a comprehensive review. Sci World J 2012:212178.  https://doi.org/10.1100/2012/212178 CrossRefGoogle Scholar
  28. 28.
    Efstratiadis G, Sarigianni M, Gougourelas I (2006) Hypomagnesemia and cardiovascular system. Hippokratia 10:147–152PubMedPubMedCentralGoogle Scholar
  29. 29.
    Rothenbuhler A, Marchand I, Bougnères P, Linglart A (2010) Risk of corrected QT interval prolongation after pamidronate infusion in children. J Clin Endocrinol Metab 95:3768–3770.  https://doi.org/10.1210/jc.2009-2814 CrossRefPubMedGoogle Scholar
  30. 30.
    Oiwa H, Mokuda S (2015) Severe hypocalcemia and prolonged QT interval due to denosumab in an elderly woman with rheumatoid arthritis and chronic kidney disease. Letter to Editor. Eur J Rheumatol.  https://doi.org/10.5152/eurjrheum.2015.0049 CrossRefGoogle Scholar
  31. 31.
    Veltri KT, Mason C (2015) Medication-induced Hypokalemia. Pharm Ther 40:185–190Google Scholar
  32. 32.
    Liljeqvist JA, Edvardsson N (1989) Torsade de pointes tachycardias induced by overdosage of zimeldine. J Cardiovasc Pharmacol 14:666–670CrossRefPubMedGoogle Scholar
  33. 33.
    Kumar V, Khosla S, Stancu M (2017) Torsade de pointes induced by hypokalemia from imipenem and piperacillin. Case Rep Cardiol 2017:4565182.  https://doi.org/10.1155/2017/4565182 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Zeuli JD, Wilson JW, Estes LL (2013) Effect of combined fluoroquinolone and azole use on QT prolongation in hematology patients. Antimicrob Agents Chemother 57:1121–1127.  https://doi.org/10.1128/AAC.00958-12 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Albert RK, Schuller JL, COPD Clinical Research Network (2014) Macrolide antibiotics and the risk of cardiac arrhythmias. Am J Respir Crit Care Med 189:1173–1180.  https://doi.org/10.1164/rccm.201402-0385ci CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Patel N, Wiśniowska B, Jamei M, Polak S (2018) Real patient and its virtual twin: application of quantitative systems toxicology modelling in the cardiac safety assessment of citalopram. Am Assoc Pharm Sci J 20:6Google Scholar
  37. 37.
    Tucker GT (2017) Personalized drug dosage—closing the loop. Pharm Res 34:1539–1543.  https://doi.org/10.1007/s11095-016-2076-0 CrossRefPubMedGoogle Scholar
  38. 38.
    Kuusela TA, Jartti TT, Tahvanainen KU, Kaila TJ (2005) Prolongation of QT interval by terbutaline in healthy subjects. J Cardiovasc Pharmacol 45:175–181CrossRefPubMedGoogle Scholar
  39. 39.
    Lecaillon JB, Kaiser G, Palmisano M, Morgan J, Cioppa GD (1999) Pharmacokinetics and tolerability of formoterol in healthy volunteers after a single high dose of Foradil dry powder inhalation via Aerolizer. Eur J Clin Pharmacol 55:131–138CrossRefPubMedGoogle Scholar
  40. 40.
    Clifton GD, Hunt BA, Patel RC, Burki NK (1990) Effects of sequential doses of parenteral terbutaline on plasma levels of potassium and related cardiopulmonary responses. Am Rev Respir Dis 141:575–579.  https://doi.org/10.1164/ajrccm/141.3.575 CrossRefPubMedGoogle Scholar
  41. 41.
    Tveskov C, Djurhuus MS, Klitgaard NA, Egstrup K (1994) Potassium and magnesium distribution, ECG changes, and ventricular ectopic beats during beta 2-adrenergic stimulation with terbutaline in healthy subjects. Chest 106:1654–1659CrossRefPubMedGoogle Scholar
  42. 42.
    ten Tusscher KH, Noble D, Noble PJ, Panfilov AV (2004) A model for human ventricular tissue. Am J Physiol Circ Physiol 286:H1573–H1589.  https://doi.org/10.1152/ajpheart.00794.2003 CrossRefGoogle Scholar
  43. 43.
    Polak S, Wisniowska B, Fijorek K, Glinka A, Mendyk A (2014) In vitro-in vivo extrapolation of drug-induced proarrhythmia predictions at the population level. Drug Discov Today 19:275–281.  https://doi.org/10.1016/j.drudis.2013.10.009 CrossRefPubMedGoogle Scholar
  44. 44.
    Fijorek K, Patel N, Klima L, Stolarz-Skrzypek K, Kawecka-Jaszcz K, Polak S (2013) Age and gender dependent heart rate circadian model development and performance verification on the proarrhythmic drug case study. Theor Biol Med Model.  https://doi.org/10.1186/1742-4682-10-7 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Fijorek K, Puskulluoglu M, Polak S (2013) Circadian models of serum potassium, sodium, and calcium concentrations in healthy individuals and their application to cardiac electrophysiology simulations at individual level. Comput Math Methods Med 2013:429037.  https://doi.org/10.1155/2013/429037 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Polak S, Fijorek K (2012) Inter-individual variability in the pre-clinical drug cardiotoxic safety assessment analysis of the age-cardiomyocytes electric capacitance dependence. J Cardiovasc Transl Res 5:321–332.  https://doi.org/10.1007/s12265-012-9357-8 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bazett H (1997) An analysis of the time-relations of electrocardiograms. Ann Noninvasive Electrocardiol 2:177–194CrossRefGoogle Scholar
  48. 48.
    Karjalainen J, Viitasalo M, Mänttäri M, Manninen V (1994) Relation between QT intervals and heart rates from 40 to 120 beats/min in rest electrocardiograms of men and a simple method to adjust QT interval values. J Am Coll Cardiol 23:1547–1553CrossRefPubMedGoogle Scholar
  49. 49.
    Wiśniowska B, Mendyk A, Szlęk J, Kołaczkowski M, Polak S (2015) Enhanced QSAR models for drug-triggered inhibition of the main cardiac ion currents. J Appl Toxicol JAT 35:1030–1039.  https://doi.org/10.1002/jat.3095 CrossRefPubMedGoogle Scholar
  50. 50.
    Kjeldsen K (2010) Hypokalemia and sudden cardiac death. Exp Clin Cardiol 15:e96–e99PubMedPubMedCentralGoogle Scholar
  51. 51.
    Liamis R, Rodenburg E, Hofman A, Zietse R, Stricker B, Hoorn E (2013) Electrolyte disorders in community subjects: prevalence and risk factors. Am J Med 126:256–263CrossRefPubMedGoogle Scholar
  52. 52.
    Lam MH, Chau SW, Wing Y (2009) High prevalence of hypokalemia in acute psychiatric inpatients. Gen Hosp Psychiatry 31:262–265.  https://doi.org/10.1016/j.genhosppsych.2009.02.007 CrossRefPubMedGoogle Scholar
  53. 53.
    Widodo D, Setiawan B, Chen K, Nainggolan L, Santoso WD (2006) The prevalence of hypokalemia in hospitalized patients with infectious diseases problem at Cipto Mangunkusumo Hospital, Jakarta. Acta Med Indones 38:202–205PubMedGoogle Scholar
  54. 54.
    Bardak S, Turgutalp K, Koyuncu MB, Harı H, Helvacı I, Ovla D, Horoz M, Demir S, Kıykım A (2017) Community-acquired hypokalemia in elderly patients: related factors and clinical outcomes. Int Urol Nephrol 49:483–489.  https://doi.org/10.1007/s11255-016-1489-3 CrossRefPubMedGoogle Scholar
  55. 55.
    Takahashi S, Driscoll BF, Law MJ, Sokoloff L (1995) Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia. Proc Natl Acad Sci USA 92:4616–4620CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kones RJ (1976) Potassium metabolism in the normal and ischemic heart cell. Int J Clin Pharmacol Biopharm 13:269–291PubMedGoogle Scholar
  57. 57.
    Palmer BF (2015) Regulation of potassium homeostasis. Clin J Am Soc Nephrol 10:1050–1060.  https://doi.org/10.2215/CJN.08580813 CrossRefPubMedGoogle Scholar
  58. 58.
    Kannankeril P, Roden DM, Darbar D (2010) Drug-induced long QT syndrome. Pharmacol Rev 62:760–781.  https://doi.org/10.1124/pr.110.003723 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Food and Drug Administration HHS (2005) International conference on harmonisation; guidance on E14 clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs; availability. Notice. Fed Regist 70:61134-5Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of PharmacyJagiellonian University Medical CollegeKrakowPoland
  2. 2.Simcyp (Part of Certara)SheffieldUK

Personalised recommendations