Adjusted adaptive Lasso for covariate model-building in nonlinear mixed-effect pharmacokinetic models

  • Elham Haem
  • Kajsa Harling
  • Seyyed Mohammad Taghi Ayatollahi
  • Najaf Zare
  • Mats O. Karlsson
Original Paper

Abstract

One important aim in population pharmacokinetics (PK) and pharmacodynamics is identification and quantification of the relationships between the parameters and covariates. Lasso has been suggested as a technique for simultaneous estimation and covariate selection. In linear regression, it has been shown that Lasso possesses no oracle properties, which means it asymptotically performs as though the true underlying model was given in advance. Adaptive Lasso (ALasso) with appropriate initial weights is claimed to possess oracle properties; however, it can lead to poor predictive performance when there is multicollinearity between covariates. This simulation study implemented a new version of ALasso, called adjusted ALasso (AALasso), to take into account the ratio of the standard error of the maximum likelihood (ML) estimator to the ML coefficient as the initial weight in ALasso to deal with multicollinearity in non-linear mixed-effect models. The performance of AALasso was compared with that of ALasso and Lasso. PK data was simulated in four set-ups from a one-compartment bolus input model. Covariates were created by sampling from a multivariate standard normal distribution with no, low (0.2), moderate (0.5) or high (0.7) correlation. The true covariates influenced only clearance at different magnitudes. AALasso, ALasso and Lasso were compared in terms of mean absolute prediction error and error of the estimated covariate coefficient. The results show that AALasso performed better in small data sets, even in those in which a high correlation existed between covariates. This makes AALasso a promising method for covariate selection in nonlinear mixed-effect models.

Keywords

Lasso Adaptive Lasso Multicollinearity Covariate model building Mixed effects modeling 

Supplementary material

10928_2017_9504_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 25 kb)
10928_2017_9504_MOESM2_ESM.docx (24 kb)
Supplementary material 2 (DOCX 24 kb)

References

  1. 1.
    Wählby U, Jonsson EN, Karlsson MO (2002) Comparison of stepwise covariate model building strategies in population pharmacokinetic–pharmacodynamic analysis. AAPS PharmSci 4(4):68–79. doi:10.1208/ps040427 CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Ribbing J, Jonsson EN (2004) Power, selection bias and predictive performance of the population pharmacokinetic covariate model. J Pharmacokinet Pharmacodyn 31(2):109–134. doi:10.1023/B:JOPA.0000034404.86036.72 CrossRefPubMedGoogle Scholar
  3. 3.
    Jonsson EN, Karlsson MO (1998) Automated covariate model building within NONMEM. Pharm Res 15(9):1463–1468. doi:10.1023/A:1011970125687 CrossRefPubMedGoogle Scholar
  4. 4.
    Ribbing J, Nyberg J, Caster O, Jonsson EN (2007) The Lasso—a novel method for predictive covariate model building in nonlinear mixed effects models. J Pharmacokinet Pharmacodyn 34(4):485–517. doi:10.1007/s10928-007-9057-1 CrossRefPubMedGoogle Scholar
  5. 5.
    Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc B 58:267–288Google Scholar
  6. 6.
    Tibshirani R (1997) The Lasso method for variable selection in the Cox model. Stat Med 16(4):385–395CrossRefPubMedGoogle Scholar
  7. 7.
    Zou H (2006) The adaptive Lasso and its oracle properties. J Am Stat Assoc 101(476):1418–1429. doi:10.1198/016214506000000735 CrossRefGoogle Scholar
  8. 8.
    Algamal ZY, Lee MH (2015) Adjusted adaptive Lasso in high-dimensional Poisson regression model. Mod Appl Sci 9(4):170. doi:10.5539/mas.v9n4p170 CrossRefGoogle Scholar
  9. 9.
    Lian H (2012) Variable selection in high-dimensional partly linear additive models. J Nonparametr Stat 24(4):825–839CrossRefGoogle Scholar
  10. 10.
    Griffin JE, Brown PJ (2007) Bayesian adaptive Lassos with non-convex penalization. Working Paper. University of Warwick, CoventryGoogle Scholar
  11. 11.
    Griffin JE, Brown PJ (2011) Bayesian hyper-Lassos with non-convex penalization. Aust NZ J Stat 53(4):423–442. doi:10.1111/j.1467-842X.2011.00641.x CrossRefGoogle Scholar
  12. 12.
    Qian W, Yang Y (2013) Model selection via standard error adjusted adaptive Lasso. Ann Inst Stat Math 65(2):295–318CrossRefGoogle Scholar
  13. 13.
    Hoggart CJ, Whittaker JC, De Iorio M, Balding DJ (2008) Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies. PLoS Genet 4(7):e1000130CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bertrand J, Balding DJ (2013) Multiple single nucleotide polymorphism analysis using penalized regression in nonlinear mixed-effect pharmacokinetic models. Pharmacogenet Genomics 23(3):167–174. doi:10.1097/FPC.0b013e32835dd22c CrossRefPubMedGoogle Scholar
  15. 15.
    Tessier A, Bertrand J, Chenel M, Comets E (2015) Comparison of nonlinear mixed effects models and noncompartmental approaches in detecting pharmacogenetic covariates. AAPS J 17(3):597–608. doi:10.1208/s12248-015-9726-8 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Breiman L, Spector P (1992) Submodel selection and evaluation in regression. The X-random case. Int Stat Rev. doi:10.2307/1403680 Google Scholar
  17. 17.
    Huang J, Ma S, Zhang C-H (2008) Adaptive Lasso for sparse high-dimensional regression models. Stat Sin 18:1603–1618Google Scholar
  18. 18.
    Zhou S, van de Geer S, Bühlmann P (2009) Adaptive Lasso for high dimensional regression and Gaussian graphical modeling. arXiv:0903.2515
  19. 19.
    Krämer N, Schäfer J, Boulesteix A-L (2009) Regularized estimation of large-scale gene association networks using graphical Gaussian models. BMC Bioinform 10(1):1CrossRefGoogle Scholar
  20. 20.
    Bonate PL (1999) The effect of collinearity on parameter estimates in nonlinear mixed effect models. Pharm Res 16(5):709–717. doi:10.1023/A:1018828709196 CrossRefPubMedGoogle Scholar
  21. 21.
    Bühlmann P, Van De Geer S (2011) Statistics for high-dimensional data: methods, theory and applications. Springer, BerlinCrossRefGoogle Scholar
  22. 22.
    Algamal ZY, Lee MH (2015) Penalized logistic regression with the adaptive Lasso for gene selection in high-dimensional cancer classification. Expert Syst Appl 42(23):9326–9332. doi:10.1016/j.eswa.2015.08.016 CrossRefGoogle Scholar
  23. 23.
    Schelldorfer J, Meier L, Bühlmann P (2014) GLMMLasso: an algorithm for high-dimensional generalized linear mixed models using ℓ1-penalization. J Comput Graph Stat 23(2):460–477. doi:10.1080/10618600.2013.773239 CrossRefGoogle Scholar
  24. 24.
    Tessier A, Bertrand J, Chenel M, Comets E (2016) Combined analysis of phase I and phase II data to enhance the power of pharmacogenetic tests. CPT Pharmacomet Syst Pharmacol 5(3):123–131. doi:10.1002/psp4.12054 CrossRefGoogle Scholar
  25. 25.
    Combes F, Retout S, Frey N, Mentré F (2014) Powers of the likelihood ratio test and the correlation test using empirical Bayes estimates for various shrinkages in population pharmacokinetics. CPT Pharmacomet Syst Pharmacol 3(4):1–9CrossRefGoogle Scholar
  26. 26.
    Dosne AG, Bergstrand M, Harling K, Karlsson MO (2016) Improving the estimation of parameter uncertainty distributions in nonlinear mixed effects models using sampling importance resampling. J Pharmacokinet Pharmacodyn 43(6):583–596. doi:10.1007/s10928-016-9487-8 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Elham Haem
    • 1
    • 2
  • Kajsa Harling
    • 2
  • Seyyed Mohammad Taghi Ayatollahi
    • 1
  • Najaf Zare
    • 3
  • Mats O. Karlsson
    • 2
  1. 1.Department of BiostatisticsShiraz University of Medical Sciences School of MedicineShirazIran
  2. 2.Department of Pharmaceutical BiosciencesUppsala UniversityUppsalaSweden
  3. 3.Department of Biostatistics, Infertility Research CenterShiraz University of Medical SciencesShirazIran

Personalised recommendations