Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies

Original Paper

Abstract

Accurate prediction of the clinical pharmacokinetics of new therapeutic entities facilitates decision making during drug discovery, and increases the probability of success for early clinical trials. Standard strategies employed for predicting the pharmacokinetics of small-molecule drugs (e.g., allometric scaling) are often not useful for predicting the disposition monoclonal antibodies (mAbs), as mAbs frequently demonstrate species-specific non-linear pharmacokinetics that is related to mAb-target binding (i.e., target-mediated drug disposition, TMDD). The saturable kinetics of TMDD are known to be influenced by a variety of factors, including the sites of target expression (which determines the accessibility of target to mAb), the extent of target expression, the rate of target turnover, and the fate of mAb-target complexes. In most cases, quantitative information on the determinants of TMDD is not available during early phases of drug discovery, and this has complicated attempts to employ mechanistic mathematical models to predict the clinical pharmacokinetics of mAbs. In this report, we introduce a simple strategy, employing physiologically-based modeling, to predict mAb disposition in humans. The approach employs estimates of inter-antibody variability in rate processes of extravasation in tissues and fluid-phase endocytosis, estimates for target concentrations in tissues derived through use of categorical immunohistochemical scores, and in vitro measures of the turnover of target and target-mAb complexes. Monte Carlo simulations were performed for four mAbs (cetuximab, figitumumab, dalotuzumab, trastuzumab) directed against three targets (epidermal growth factor receptor, insulin-like growth factor receptor 1, human epidermal growth factor receptor 2). The proposed modeling strategy was able to predict well the pharmacokinetics of cetuximab, dalotuzumab, and trastuzumab at a range of doses, but trended towards underprediction of figitumumab concentrations, particularly at high doses. The general agreement between model predictions and experimental observations suggests that PBPK modeling may be useful for the a priori prediction of the clinical pharmacokinetics of mAb therapeutics.

Keywords

Monoclonal antibody Physiologically-based pharmacokinetics (PBPK) Clinical pharmacokinetics Target-mediated drug disposition (TMDD) 

References

  1. 1.
    Reichert JM (2015) Antibodies to watch in 2016. mAbs:1-8. doi:10.1080/19420862.2015.1125583
  2. 2.
    Wang W, Wang EQ, Balthasar JP (2008) Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 84(5):548–558. doi:10.1038/clpt.2008.170 CrossRefPubMedGoogle Scholar
  3. 3.
    Hooks MA, Wade CS, Millikan WJ Jr (1991) Muromonab CD-3: a review of its pharmacology, pharmacokinetics, and clinical use in transplantation. Pharmacotherapy 11(1):26–37PubMedGoogle Scholar
  4. 4.
    Sohn W, Simiens MA, Jaeger K, Hutton S, Jang G (2014) The pharmacokinetics and pharmacodynamics of denosumab in patients with advanced solid tumours and bone metastases: a systematic review. Br J Clin Pharmacol 78(3):477–487. doi:10.1111/bcp.12355 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bugelski PJ, Martin PL (2012) Concordance of preclinical and clinical pharmacology and toxicology of therapeutic monoclonal antibodies and fusion proteins: cell surface targets. Br J Pharmacol 166(3):823–846. doi:10.1111/j.1476-5381.2011.01811.x CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Levy G (1994) Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther 56(3):248–252CrossRefPubMedGoogle Scholar
  7. 7.
    Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28(6):507–532CrossRefPubMedGoogle Scholar
  8. 8.
    Aston PJ, Derks G, Raji A, Agoram BM, van der Graaf PH (2011) Mathematical analysis of the pharmacokinetic-pharmacodynamic (PKPD) behaviour of monoclonal antibodies: predicting in vivo potency. J Theor Biol 281(1):113–121. doi:10.1016/j.jtbi.2011.04.030 CrossRefPubMedGoogle Scholar
  9. 9.
    Grimm HP (2009) Gaining insights into the consequences of target-mediated drug disposition of monoclonal antibodies using quasi-steady-state approximations. J Pharmacokinet Pharmacodyn 36(5):407–420. doi:10.1007/s10928-009-9129-5 CrossRefPubMedGoogle Scholar
  10. 10.
    Dedrick RL (1973) Animal scale-up. J Pharmacokinet Biopharm 1(5):435–461CrossRefPubMedGoogle Scholar
  11. 11.
    Ling J, Zhou H, Jiao Q, Davis HM (2009) Interspecies scaling of therapeutic monoclonal antibodies: initial look. J Clin Pharmacol 49(12):1382–1402. doi:10.1177/0091270009337134 CrossRefPubMedGoogle Scholar
  12. 12.
    Dong JQ, Salinger DH, Endres CJ, Gibbs JP, Hsu CP, Stouch BJ, Hurh E, Gibbs MA (2011) Quantitative prediction of human pharmacokinetics for monoclonal antibodies: retrospective analysis of monkey as a single species for first-in-human prediction. Clin Pharmacokinet 50(2):131–142. doi:10.2165/11537430-000000000-00000 CrossRefPubMedGoogle Scholar
  13. 13.
    Baxter LT, Zhu H, Mackensen DG, Butler WF, Jain RK (1995) Biodistribution of monoclonal antibodies: scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res 55(20):4611–4622PubMedGoogle Scholar
  14. 14.
    Davda JP, Jain M, Batra SK, Gwilt PR, Robinson DH (2008) A physiologically based pharmacokinetic (PBPK) model to characterize and predict the disposition of monoclonal antibody CC49 and its single chain Fv constructs. Int Immunopharmacol 8(3):401–413. doi:10.1016/j.intimp.2007.10.023 CrossRefPubMedGoogle Scholar
  15. 15.
    Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39(1):67–86. doi:10.1007/s10928-011-9232-2 CrossRefPubMedGoogle Scholar
  16. 16.
    Urva SR, Yang VC, Balthasar JP (2010) Physiologically based pharmacokinetic model for T84.66: a monoclonal anti-CEA antibody. J Pharm Sci 99(3):1582–1600. doi:10.1002/jps.21918 CrossRefPubMedGoogle Scholar
  17. 17.
    Abuqayyas L, Balthasar JP (2012) Application of PBPK modeling to predict monoclonal antibody disposition in plasma and tissues in mouse models of human colorectal cancer. J Pharmacokinet Pharmacodyn 39(6):683–710. doi:10.1007/s10928-012-9279-8 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chen Y, Balthasar JP (2012) Evaluation of a catenary PBPK model for predicting the in vivo disposition of mAbs engineered for high-affinity binding to FcRn. AAPS J 14(4):850–859. doi:10.1208/s12248-012-9395-9 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Glassman PM, Chen Y, Balthasar JP (2015) Scale-up of a physiologically-based pharmacokinetic model to predict the disposition of monoclonal antibodies in monkeys. J Pharmacokinet Pharmacodyn 42(5):527–540. doi:10.1007/s10928-015-9444-y CrossRefPubMedGoogle Scholar
  20. 20.
    Garg A, Balthasar JP (2007) Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34(5):687–709. doi:10.1007/s10928-007-9065-1 CrossRefPubMedGoogle Scholar
  21. 21.
    Glassman PM, Balthasar JP (2016) Application of a catenary PBPK model to predict the disposition of “catch and release” anti-PCSK9 antibodies. Int J Pharm. doi:10.1016/j.ijpharm.2016.03.066 PubMedGoogle Scholar
  22. 22.
    Lindstedt SL, Calder WA (1981) Body size, physiological time, and longevity of homeothermic animals. Q Rev Biol 56(1):1–16. doi:10.1086/412080 CrossRefGoogle Scholar
  23. 23.
    Savage VM, Gillooly JF, Woodruff WH, West GB, Allen AP, Enquist BJ, Brown JH (2004) The predominance of quarter-power scaling in biology. Funct Ecol 18(2):257–282. doi:10.1111/j.0269-8463.2004.00856.x CrossRefGoogle Scholar
  24. 24.
    Hahnfeldt P, Panigrahy D, Folkman J, Hlatky L (1999) Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res 59(19):4770–4775PubMedGoogle Scholar
  25. 25.
    Davies PF, Ross R (1978) Mediation of pinocytosis in cultured arterial smooth muscle and endothelial cells by platelet-derived growth factor. J Cell Biol 79(3):663–671CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Garg A (2007) Investigation of the Role of FcRn in the Absorption, Distribution, and Elimination of Monoclonal Antibodies. University at BuffaloGoogle Scholar
  27. 27.
    Raghavan M, Bjorkman PJ (1996) Fc receptors and their interactions with immunoglobulins. Annu Rev Cell Dev Biol 12:181–220. doi:10.1146/annurev.cellbio.12.1.181 CrossRefPubMedGoogle Scholar
  28. 28.
    Waldmann TA, Strober W (1969) Metabolism of immunoglobulins. Prog Allergy 13:1–110PubMedGoogle Scholar
  29. 29.
    Everitt DE, Davis CB, Thompson K, DiCicco R, Ilson B, Demuth SG, Herzyk DJ, Jorkasky DK (1996) The pharmacokinetics, antigenicity, and fusion-inhibition activity of RSHZ19, a humanized monoclonal antibody to respiratory syncytial virus, in healthy volunteers. J Infect Dis 174(3):463–469CrossRefPubMedGoogle Scholar
  30. 30.
    Lopez EL, Contrini MM, Glatstein E, Gonzalez Ayala S, Santoro R, Allende D, Ezcurra G, Teplitz E, Koyama T, Matsumoto Y, Sato H, Sakai K, Hoshide S, Komoriya K, Morita T, Harning R, Brookman S (2010) Safety and pharmacokinetics of urtoxazumab, a humanized monoclonal antibody, against Shiga-like toxin 2 in healthy adults and in pediatric patients infected with Shiga-like toxin-producing Escherichia coli. Antimicrob Agents Chemother 54(1):239–243. doi:10.1128/AAC.00343-09 CrossRefPubMedGoogle Scholar
  31. 31.
    Oh CK, Faggioni R, Jin F, Roskos LK, Wang B, Birrell C, Wilson R, Molfino NA (2010) An open-label, single-dose bioavailability study of the pharmacokinetics of CAT-354 after subcutaneous and intravenous administration in healthy males. Br J Clin Pharmacol 69(6):645–655. doi:10.1111/j.1365-2125.2010.03647.x CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ortega H, Yancey S, Cozens S (2014) Pharmacokinetics and absolute bioavailability of mepolizumab following administration at subcutaneous and intramuscular sites. Clin Pharmacol Drug Develop 3(1):57–62. doi:10.1002/cpdd.60 CrossRefGoogle Scholar
  33. 33.
    Robbie GJ, Criste R, Dall’Acqua WF, Jensen K, Patel NK, Losonsky GA, Griffin MP (2013) A novel investigational Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults. Antimicrobial agents and chemotherapy 57(12):6147–6153. doi:10.1128/AAC.01285-13 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Shida Y, Takahashi N, Sakamoto T, Ino H, Endo A, Hirama T (2014) The pharmacokinetics and safety profiles of belimumab after single subcutaneous and intravenous doses in healthy Japanese volunteers. J Clin Pharm Ther 39(1):97–101. doi:10.1111/jcpt.12101 CrossRefPubMedGoogle Scholar
  35. 35.
    Taylor CP, Tummala S, Molrine D, Davidson L, Farrell RJ, Lembo A, Hibberd PL, Lowy I, Kelly CP (2008) Open-label, dose escalation phase I study in healthy volunteers to evaluate the safety and pharmacokinetics of a human monoclonal antibody to Clostridium difficile toxin A. Vaccine 26(27–28):3404–3409. doi:10.1016/j.vaccine.2008.04.042 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Weisman MH, Moreland LW, Furst DE, Weinblatt ME, Keystone EC, Paulus HE, Teoh LS, Velagapudi RB, Noertersheuser PA, Granneman GR, Fischkoff SA, Chartash EK (2003) Efficacy, pharmacokinetic, and safety assessment of adalimumab, a fully human anti-tumor necrosis factor-alpha monoclonal antibody, in adults with rheumatoid arthritis receiving concomitant methotrexate: a pilot study. Clin Ther 25(6):1700–1721CrossRefPubMedGoogle Scholar
  37. 37.
    White B, Leon F, White W, Robbie G (2009) Two first-in-human, open-label, phase I dose-escalation safety trials of MEDI-528, a monoclonal antibody against interleukin-9, in healthy adult volunteers. Clin Ther 31(4):728–740. doi:10.1016/j.clinthera.2009.04.019 CrossRefPubMedGoogle Scholar
  38. 38.
    Xu Z, Bouman-Thio E, Comisar C, Frederick B, Van Hartingsveldt B, Marini JC, Davis HM, Zhou H (2011) Pharmacokinetics, pharmacodynamics and safety of a human anti-IL-6 monoclonal antibody (sirukumab) in healthy subjects in a first-in-human study. Br J Clin Pharmacol 72(2):270–281. doi:10.1111/j.1365-2125.2011.03964.x CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Yin D, Sleight B, Alvey C, Hansson AG, Bello A (2013) Pharmacokinetics and pharmacodynamics of figitumumab, a monoclonal antibody targeting the insulin-like growth factor 1 receptor, in healthy participants. J Clin Pharmacol 53(1):21–28. doi:10.1177/0091270011432934 CrossRefPubMedGoogle Scholar
  40. 40.
    DeFazio-Eli L, Strommen K, Dao-Pick T, Parry G, Goodman L, Winslow J (2011) Quantitative assays for the measurement of HER1-HER2 heterodimerization and phosphorylation in cell lines and breast tumors: applications for diagnostics and targeted drug mechanism of action. Breast Cancer Res 13(2):R44. doi:10.1186/bcr2866 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Gandy M, Ibrahim M, Miller K, Barker C, Reid V Cell Line Control Update by UKNEQAS ICC & ISH and Leica Biosystems Newcastle Part 1 - Cell Line CharacterizationGoogle Scholar
  42. 42.
    Hammond ME (2011) ASCO-CAP Guidelines for Breast Predictive Factor Testing. University of Utah Department of PathologyGoogle Scholar
  43. 43.
    Hussain S, Rodriguez-Fernandez M, Braun GB, Doyle FJ 3rd, Ruoslahti E (2014) Quantity and accessibility for specific targeting of receptors in tumours. Sci Rep 4:5232. doi:10.1038/srep05232 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Onsum MD, Geretti E, Paragas V, Kudla AJ, Moulis SP, Luus L, Wickham TJ, McDonagh CF, Macbeath G, Hendriks BS (2013) Single-cell quantitative HER2 measurement identifies heterogeneity and distinct subgroups within traditionally defined HER2-positive patients. Am J Pathol 183(5):1446–1460. doi:10.1016/j.ajpath.2013.07.015 CrossRefPubMedGoogle Scholar
  45. 45.
    Berglund L, Bjorling E, Oksvold P, Fagerberg L, Asplund A, Szigyarto CA, Persson A, Ottosson J, Wernerus H, Nilsson P, Lundberg E, Sivertsson A, Navani S, Wester K, Kampf C, Hober S, Ponten F, Uhlen M (2008) A genecentric Human Protein Atlas for expression profiles based on antibodies. Mol Cell Proteomics 7(10):2019–2027. doi:10.1074/mcp.R800013-MCP200 CrossRefPubMedGoogle Scholar
  46. 46.
    Ponten F, Jirstrom K, Uhlen M (2008) The Human Protein Atlas—a tool for pathology. J Pathol 216(4):387–393. doi:10.1002/path.2440 CrossRefPubMedGoogle Scholar
  47. 47.
    Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E, Andersson AC, Angelidou P, Asplund A, Asplund C, Berglund L, Bergstrom K, Brumer H, Cerjan D, Ekstrom M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Bjorklund MG, Gumbel K, Halimi A, Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Odling J, Oksvold P, Olsson I, Oster E, Ottosson J, Paavilainen L, Persson A, Rimini R, Rockberg J, Runeson M, Sivertsson A, Skollermo A, Steen J, Stenvall M, Sterky F, Stromberg S, Sundberg M, Tegel H, Tourle S, Wahlund E, Walden A, Wan J, Wernerus H, Westberg J, Wester K, Wrethagen U, Xu LL, Hober S, Ponten F (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4(12):1920–1932. doi:10.1074/mcp.M500279-MCP200 CrossRefPubMedGoogle Scholar
  48. 48.
    Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics. Tissue-based map of the human proteome. Science 347(6220):1260419. doi:10.1126/science.1260419 CrossRefPubMedGoogle Scholar
  49. 49.
    Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S, Wernerus H, Bjorling L, Ponten F (2010) Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 28(12):1248–1250. doi:10.1038/nbt1210-1248 CrossRefPubMedGoogle Scholar
  50. 50.
    Baulida J, Kraus MH, Alimandi M, Fiore PPD, Carpenter G (1996) All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. J Biol Chem 271(9):5251–5257. doi:10.1074/jbc.271.9.5251 CrossRefPubMedGoogle Scholar
  51. 51.
    Beguinot L, Lyall RM, Willingham MC, Pastan I (1984) Down-regulation of the epidermal growth factor receptor in KB cells is due to receptor internalization and subsequent degradation in lysosomes. Proc Natl Acad Sci USA 81(8):2384–2388CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Burke PM, Wiley HS (1999) Human mammary epithelial cells rapidly exchange empty EGFR between surface and intracellular pools. J Cell Physiol 180(3):448–460. doi:10.1002/(SICI)1097-4652(199909)180:3<448:AID-JCP16>3.0.CO;2-8 CrossRefPubMedGoogle Scholar
  53. 53.
    Felder S, LaVin J, Ullrich A, Schlessinger J (1992) Kinetics of binding, endocytosis, and recycling of EGF receptor mutants. J Cell Biol 117(1):203–212CrossRefPubMedGoogle Scholar
  54. 54.
    Hanover JA, Beguinot L, Willingham MC, Pastan IH (1985) Transit of receptors for epidermal growth factor and transferrin through clathrin-coated pits. Analysis of the kinetics of receptor entry. J Biol Chem 260(29):15938–15945PubMedGoogle Scholar
  55. 55.
    Stoscheck CM, Carpenter G (1984) Down regulation of epidermal growth factor receptors: direct demonstration of receptor degradation in human fibroblasts. J Cell Biol 98(3):1048–1053CrossRefPubMedGoogle Scholar
  56. 56.
    Wiley HS, Cunningham DD (1982) The endocytotic rate constant. A cellular parameter for quantitating receptor-mediated endocytosis. J Biol Chem 257(8):4222–4229PubMedGoogle Scholar
  57. 57.
    Bronner F, Kleinzeller A, Yale University. Department of Physiology. Current topics in membranes and transport. Academic Press, San DiegoGoogle Scholar
  58. 58.
    Jaramillo ML, Leon Z, Grothe S, Paul-Roc B, Abulrob A, O’Connor McCourt M (2006) Effect of the anti-receptor ligand-blocking 225 monoclonal antibody on EGF receptor endocytosis and sorting. Exp Cell Res 312(15):2778–2790. doi:10.1016/j.yexcr.2006.05.008 CrossRefPubMedGoogle Scholar
  59. 59.
    Girnita L, Girnita A, Larsson O (2003) Mdm2-dependent ubiquitination and degradation of the insulin-like growth factor 1 receptor. Proc Natl Acad Sci USA 100(14):8247–8252. doi:10.1073/pnas.1431613100 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Paye JM, Forsten-Williams K (2006) Regulation of insulin-like growth factor-I (IGF-I) delivery by IGF binding proteins and receptors. Ann Biomed Eng 34(4):618–632. doi:10.1007/s10439-005-9064-6 CrossRefPubMedGoogle Scholar
  61. 61.
    Prager D, Li HL, Yamasaki H, Melmed S (1994) Human insulin-like growth factor I receptor internalization. Role of the juxtamembrane domain. J Biol Chem 269(16):11934–11937PubMedGoogle Scholar
  62. 62.
    Huang SS, Koh HA, Konish Y, Bullock LD, Huang JS (1990) Differential processing and turnover of the oncogenically activated neu/erb B2 gene product and its normal cellular counterpart. J Biol Chem 265(6):3340–3346PubMedGoogle Scholar
  63. 63.
    Nielsen UB, Kirpotin DB, Pickering EM, Hong K, Park JW, Refaat Shalaby M, Shao Y, Benz CC, Marks JD (2002) Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochim Biophys Acta 1591(1–3):109–118CrossRefPubMedGoogle Scholar
  64. 64.
    Stancovski I, Hurwitz E, Leitner O, Ullrich A, Yarden Y, Sela M (1991) Mechanistic aspects of the opposing effects of monoclonal antibodies to the ERBB2 receptor on tumor growth. Proc Natl Acad Sci USA 88(19):8691–8695CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Valabrega G, Montemurro F, Sarotto I, Petrelli A, Rubini P, Tacchetti C, Aglietta M, Comoglio PM, Giordano S (2005) TGFalpha expression impairs Trastuzumab-induced HER2 downregulation. Oncogene 24(18):3002–3010. doi:10.1038/sj.onc.1208478 CrossRefPubMedGoogle Scholar
  66. 66.
    Wiley HS (2003) Trafficking of the ErbB receptors and its influence on signaling. Exp Cell Res 284(1):78–88CrossRefPubMedGoogle Scholar
  67. 67.
    Mager DE, Krzyzanski W (2005) Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res 22(10):1589–1596. doi:10.1007/s11095-005-6650-0 CrossRefPubMedGoogle Scholar
  68. 68.
    Goldstein NI, Prewett M, Zuklys K, Rockwell P, Mendelsohn J (1995) Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res 1(11):1311–1318PubMedGoogle Scholar
  69. 69.
    Cohen BD, Baker DA, Soderstrom C, Tkalcevic G, Rossi AM, Miller PE, Tengowski MW, Wang F, Gualberto A, Beebe JS, Moyer JD (2005) Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 11(5):2063–2073. doi:10.1158/1078-0432.CCR-04-1070 CrossRefPubMedGoogle Scholar
  70. 70.
    Atzori F, Tabernero J, Cervantes A, Prudkin L, Andreu J, Rodriguez-Braun E, Domingo A, Guijarro J, Gamez C, Rodon J, Di Cosimo S, Brown H, Clark J, Hardwick JS, Beckman RA, Hanley WD, Hsu K, Calvo E, Rosello S, Langdon RB, Baselga J (2011) A phase I pharmacokinetic and pharmacodynamic study of dalotuzumab (MK-0646), an anti-insulin-like growth factor-1 receptor monoclonal antibody, in patients with advanced solid tumors. Clin Cancer Res 17(19):6304–6312. doi:10.1158/1078-0432.CCR-10-3336 CrossRefPubMedGoogle Scholar
  71. 71.
    Troise F, Cafaro V, Giancola C, D’Alessio G, De Lorenzo C (2008) Differential binding of human immunoagents and Herceptin to the ErbB2 receptor. FEBS J 275(20):4967–4979. doi:10.1111/j.1742-4658.2008.06625.x CrossRefPubMedGoogle Scholar
  72. 72.
    Fracasso PM, Burris H 3rd, Arquette MA, Govindan R, Gao F, Wright LP, Goodner SA, Greco FA, Jones SF, Willcut N, Chodkiewicz C, Pathak A, Springett GM, Simon GR, Sullivan DM, Marcelpoil R, Mayfield SD, Mauro D, Garrett CR (2007) A phase 1 escalating single-dose and weekly fixed-dose study of cetuximab: pharmacokinetic and pharmacodynamic rationale for dosing. Clin Cancer Res 13(3):986–993. doi:10.1158/1078-0432.CCR-06-1542 CrossRefPubMedGoogle Scholar
  73. 73.
    Tabernero J, Ciardiello F, Rivera F, Rodriguez-Braun E, Ramos FJ, Martinelli E, Vega-Villegas ME, Rosello S, Liebscher S, Kisker O, Macarulla T, Baselga J, Cervantes A (2010) Cetuximab administered once every second week to patients with metastatic colorectal cancer: a two-part pharmacokinetic/pharmacodynamic phase I dose-escalation study. Ann Oncol 21(7):1537–1545. doi:10.1093/annonc/mdp549 CrossRefPubMedGoogle Scholar
  74. 74.
    Molife LR, Fong PC, Paccagnella L, Reid AH, Shaw HM, Vidal L, Arkenau HT, Karavasilis V, Yap TA, Olmos D, Spicer J, Postel-Vinay S, Yin D, Lipton A, Demers L, Leitzel K, Gualberto A, de Bono JS (2010) The insulin-like growth factor-I receptor inhibitor figitumumab (CP-751,871) in combination with docetaxel in patients with advanced solid tumours: results of a phase Ib dose-escalation, open-label study. Br J Cancer 103(3):332–339. doi:10.1038/sj.bjc.6605767 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Tokuda Y, Watanabe T, Omuro Y, Ando M, Katsumata N, Okumura A, Ohta M, Fujii H, Sasaki Y, Niwa T, Tajima T (1999) Dose escalation and pharmacokinetic study of a humanized anti-HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. Br J Cancer 81(8):1419–1425. doi:10.1038/sj.bjc.6690343 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomedical Simulations Resource, Los AngelesGoogle Scholar
  77. 77.
    Lammerts van Bueren JJ, Bleeker WK, Bogh HO, Houtkamp M, Schuurman J, van de Winkel JG, Parren PW (2006) Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: implications for the mechanisms of action. Cancer Res 66(15):7630–7638. doi:10.1158/0008-5472.CAN-05-4010 CrossRefPubMedGoogle Scholar
  78. 78.
    Fujimori K, Covell DG, Fletcher JE, Weinstein JN (1990) A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J Nucl Med 31(7):1191–1198PubMedGoogle Scholar
  79. 79.
    Juweid M, Neumann R, Paik C, Perez-Bacete MJ, Sato J, van Osdol W, Weinstein JN (1992) Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res 52(19):5144–5153PubMedGoogle Scholar
  80. 80.
    Weinstein JN, van Osdol W (1992) Early intervention in cancer using monoclonal antibodies and other biological ligands: micropharmacology and the “binding site barrier”. Cancer Res 52(9 Suppl):2747s–2751sPubMedGoogle Scholar
  81. 81.
    Tse C, Brault D, Gligorov J, Antoine M, Neumann R, Lotz JP, Capeau J (2005) Evaluation of the quantitative analytical methods real-time PCR for HER-2 gene quantification and ELISA of serum HER-2 protein and comparison with fluorescence in situ hybridization and immunohistochemistry for determining HER-2 status in breast cancer patients. Clin Chem 51(7):1093–1101. doi:10.1373/clinchem.2004.044305 CrossRefPubMedGoogle Scholar
  82. 82.
    Bruno R, Washington CB, Lu JF, Lieberman G, Banken L, Klein P (2005) Population pharmacokinetics of trastuzumab in patients with HER2+ metastatic breast cancer. Cancer Chemother Pharmacol 56(4):361–369. doi:10.1007/s00280-005-1026-z CrossRefPubMedGoogle Scholar
  83. 83.
    Pak Y, Zhang YJ, Pastan I, Lee B (2012) Antigen shedding may improve efficiencies for delivery of antibody-based anticancer agents in solid tumors. Cancer Res 72(13):3143–3152. doi:10.1158/0008-5472.CAN-11-3925 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Strohl WR, Strohl LM (2012) Therapeutic antibody engineering: current and future advances driving the strongest growth area in the pharmaceutical industry. Elsevier Science, AmsterdamCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical SciencesUniversity at Buffalo, The State University of New YorkBuffaloUSA

Personalised recommendations