Monoclonal antibody disposition: a simplified PBPK model and its implications for the derivation and interpretation of classical compartment models

  • Ludivine Fronton
  • Sabine Pilari
  • Wilhelm HuisingaEmail author
Original Paper


The structure, interpretation and parameterization of classical compartment models as well as physiologically-based pharmacokinetic (PBPK) models for monoclonal antibody (mAb) disposition are very diverse, with no apparent consensus. In addition, there is a remarkable discrepancy between the simplicity of experimental plasma and tissue profiles and the complexity of published PBPK models. We present a simplified PBPK model based on an extravasation rate-limited tissue model with elimination potentially occurring from various tissues and plasma. Based on model reduction (lumping), we derive several classical compartment model structures that are consistent with the simplified PBPK model and experimental data. We show that a common interpretation of classical two-compartment models for mAb disposition—identifying the central compartment with the total plasma volume and the peripheral compartment with the interstitial space (or part of it)—is not consistent with current knowledge. Results are illustrated for the monoclonal antibodies 7E3 and T84.66 in mice.


mAb disposition PBPK Extravasation rate-limited tissue model Classical compartment model 



Ludivine Fronton and Sabine Pilari acknowledge financial support from the Graduate Research Training Program PharMetrX: Pharmacometrics & Computational Disease Modeling, Freie Universität Berlin and Universität Potsdam, Germany ( Fruitful discussions with the early DMPK, DMPK and M&S teams (F. Hoffmann-La Roche Ltd, pRED, Pharmaceutical Sciences, Basel, Switzerland) and Frank-Peter Theil and Jay Tibbits (UCB Pharma, Belgium) are kindly acknowledged.


  1. 1.
    Keizer R, Huitema A, Schellens J, Beijnen J (2010) Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 49:493PubMedCrossRefGoogle Scholar
  2. 2.
    Vugmeyster Y, Xu X, Theil F, Khawli L, Leach M (2012) Pharmacokinetics and toxicology of therapeutic proteins: advances and challenges. World J Biol Chem 3(4):73PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Jones H, Mayawala K, Poulin P (2013) Dose selection based on physiologically based pharmacokinetic (PBPK) approaches. AAPS J 15(2):377PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Xiao J (2012) Pharmacokinetic models for FcRn-mediated IgG disposition. J Biomed Biotechnol 2012:282989PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Baxter L, Zhu H, Mackensen D, Jain R (1994) Physiologically-based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissue and human tumor xenografts in nude mice. Cancer Res 54:1517PubMedGoogle Scholar
  6. 6.
    Ferl G, Wu M, Distefano AJ (2005) A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann Biomed Eng 33(11):1640PubMedCrossRefGoogle Scholar
  7. 7.
    Garg A, Balthasar J (2007) Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34:687PubMedCrossRefGoogle Scholar
  8. 8.
    Davda J (2008) A physiologically based pharmacokinetic (PBPK) model to characterize and predict the disposition of monoclonal antibody CC49 and its single chain Fv constructs. Int Immunopharmacol 8:401PubMedCrossRefGoogle Scholar
  9. 9.
    Urva S, Yang C, Balthasar J (2010) Physiologically based pharmacokinetic model for T84.66: a monoclonal anti-CEA antibody. J Pharm Sci 99(3):1582PubMedCrossRefGoogle Scholar
  10. 10.
    Shah D, Betts A (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39:67PubMedCrossRefGoogle Scholar
  11. 11.
    Chen Y, Balthasar J (2012) Evaluation of a catenary PBPK model for predicting the in vivo disposition of mAbs engineered for high-affinity binding to FcRn. AAPS J 14(4):850PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Lu J, Bruno R, Eppler S, Novotny W, Lum B, Gaudreault J (2008) Clinical pharmacokinetics of Bevacizumab in patients with solid tumors. Cancer Ther Pharmacol 62:779CrossRefGoogle Scholar
  13. 13.
    Wiczling P, Rosenzweig M, Vaickus L, Jusko W (2010) Pharmacokinetics and pharmacodynamics of a chimeric/humanized anti-CD3 monoclonal antibody, Otelixizumab (TRX4), in subjects with psoriasis and with type 1 diabetes mellitus. J Clin Pharmacol 50:494PubMedCrossRefGoogle Scholar
  14. 14.
    Dirks N, Nolting A, Kovar A, Meibohm B (2008) Population pharmacokinetics of cetuximab in patients with squamous cell carcinoma of the head and neck. J Clin Pharmacol 48:267PubMedCrossRefGoogle Scholar
  15. 15.
    Azzopardi N, Lecomte T, Ternant D, Piller F, Ohresser M, Watier H, Gamelin E, Paintaud G (2010) Population pharmacokinetics and exposition-PFS relationship of cetuximab in metastatic colorectal cancer. Population Approach Group MeetingGoogle Scholar
  16. 16.
    Lammertsvan Bueren J, Bleeker W, Bogh H, Houtkamp M, Schuurman J, van de Winkel J, Parren P (2006) Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: implications for the mechanisms of action. Cancer Res 66(15):7630CrossRefGoogle Scholar
  17. 17.
    Mager D, Jusko W (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28:507PubMedCrossRefGoogle Scholar
  18. 18.
    Mager D, Krzyzanski W (2005) Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res 22:1589PubMedCrossRefGoogle Scholar
  19. 19.
    Gibiansky L, Gibiansky E, Kakkar T, Ma P (2008) Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn 35:573PubMedCrossRefGoogle Scholar
  20. 20.
    Grimm H (2009) Gaining insights into the consequences of target-mediated drug disposition of monoclonal antibodies using quasi-steady-state approximations. J Pharmacokinet Pharmacodyn 36:407PubMedCrossRefGoogle Scholar
  21. 21.
    Krippendorff B, Kuester K, Kloft C, Huisinga W (2009) Nonlinear pharmacokinetics of therapeutic proteins resulting from receptor mediated endocytosis. J Pharmacokinet Pharmacodyn 36:239PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Krippendorff B, Oyarzn DHW (2012) Predicting the F(ab)-mediated effect of monoclonal antibodies in vivo by combining cell-level kinetic and pharmacokinetic modelling. J Pharmacokinet Pharmacodyn 39(2):125PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Shah D, Betts A (2013) Antibody biodistribution coefficients: inferring tissue concentrations of monoclonal antibodies based on the plasma concentrations in several preclinical species and human. mAbs 5:2–297CrossRefGoogle Scholar
  24. 24.
    Pilari S, Huisinga W (2010) Lumping of physiologically-based pharmacokinetic models and a mechanistic derivation of classical compartmental models. J Pharmacokinet Pharmacodyn 37:365405CrossRefGoogle Scholar
  25. 25.
    Garg A (2007) Investigation of the role of FcRn in the absorption, distribution, and elimination of monoclonal antibodies. Ph.D. thesis, Faculty of the Graduate School of State University of New York at BuffaloGoogle Scholar
  26. 26.
    Hansen R, Balthasar J (2003) Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia. J Pharm Sci 92(6):1206PubMedCrossRefGoogle Scholar
  27. 27.
    El-Masri H, Portier C (1998) Physiologically based pharmacokinetics model of primidone and its metabolites phenobarbital and phenylethylmalonamide in humans, rats, and mice. Drug Metab Dispos 26(6):585PubMedGoogle Scholar
  28. 28.
    Davies B, Morris T (1993) Physiological parameters in laboratory animals and humans. Pharm Res 10(7):1093PubMedCrossRefGoogle Scholar
  29. 29.
    Kawai R, Lemaire M, Steimer J, Bruelisauer A, Niederberger W, Rowland M (1994) Physiologically based pharmacokinetic study on a cyclosporine derivative, SDZ IMM 125. J Pharmacokinet Pharmacodyn 22(5):327CrossRefGoogle Scholar
  30. 30.
    Sarin H (2010) Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenesis Res 2:14CrossRefGoogle Scholar
  31. 31.
    Covell D, Barbet J, Holton O, Black C, Parker R, Weinstein J (1986) Pharmacokinetics of monoclonal immunoglobulin G1, F(ab′)2, and Fab’ in mice. Cancer Res 46(8):3969PubMedGoogle Scholar
  32. 32.
    Brown R, Delp M, Lindstedt S, Rhomberg L, Beliles R (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13(4):407PubMedCrossRefGoogle Scholar
  33. 33.
    Lagarias J, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the nelder-mead simplex method in low dimensions. J Optim Theory Appl 9(1):112Google Scholar
  34. 34.
    Borvak J, Richardson J, Medesan C, Antohe F, Radu C, Simionescu C, Ghetie VWES (1998) Functional expression of the MHC class i-related receptor, FcRn, in endothelial cells of mice. Int Immunol 10(9):12891298CrossRefGoogle Scholar
  35. 35.
    Akilesh S, Christianson G, Roopenian D, Shaw A (2007) Neonatal FcR expression in bone marrow-derived cells functions to protect serum IgG from catabolism. J Immunol 179:4580PubMedCrossRefGoogle Scholar
  36. 36.
    Montoyo H, Vaccaro C, Hafner M, Ober R, Mueller W, Ward E (2009) Conditional deletion of the MHC class i-related receptor FcRn reveals the sites of IgG homeostasis in mice. PNAS 106(8):27882793CrossRefGoogle Scholar
  37. 37.
    Ghetie V, Hubbard J, Kim MF, Tsen J-K, Lee Y, Ward E (1996) Abnormally short serum half-lives of igg in 2-microglobulin-deficient mice. Eur J Immunol 26:690PubMedCrossRefGoogle Scholar
  38. 38.
    Rodgers T, Leahy D, Rowland M (2005) Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci 94:1259PubMedCrossRefGoogle Scholar
  39. 39.
    Stoop J, Zegers BJM, Sander PC, Ballieux RE (1969) Serum immunoglobulin levels in healthy children and adults. Clin Exp Immunol 4:101PubMedPubMedCentralGoogle Scholar
  40. 40.
    EMEA (2013) Summary of product characteristics of cetuximab Google Scholar
  41. 41.
    EMEA (2012) Summary of product characteristics of infliximabGoogle Scholar
  42. 42.
    EMEA (2013) Summary of product characteristics of rituximabGoogle Scholar
  43. 43.
    EMEA (2013) Summary of product characteristics of trastuzumabGoogle Scholar
  44. 44.
    EMEA (2013) Summary of product characteristics of golimumabGoogle Scholar
  45. 45.
    EMEA (2013) Summary of product characteristics of tocilizumabGoogle Scholar
  46. 46.
    Huisinga W, Solms A, Fronton L, Pilari S (2012) Modeling inter-individual variability in physiologically-based pharmacokinetics and its link to mechanistic covariate modeling. CPT 1:e4Google Scholar
  47. 47.
    Cao Y, Balthasar JP, Jusko WJ (2013) Second-generation minimal physiologically-based pharmacokinetic model for monoclonal antibodies. J Pharmacokinet Pharmacodyn 40:597PubMedCrossRefGoogle Scholar
  48. 48.
    Brambell F, Hemmings W, Morris I (1964) A theoretical model of gamma-globulin catabolism. Nat Biotechnol 203:1352PubMedCrossRefGoogle Scholar
  49. 49.
    Junghans R, Anderson C (1996) The protection receptor for IgG catabolism is the β2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci USA 93(11):5512PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ludivine Fronton
    • 1
    • 2
    • 3
  • Sabine Pilari
    • 2
    • 4
    • 5
  • Wilhelm Huisinga
    • 6
    Email author
  1. 1.Institute of Biochemistry and BiologyUniversität PotsdamPotsdamGermany
  2. 2.Graduate Research Training Program PharMetrX: Pharmacometrics & Computational Disease ModelingFreie Universität Berlin and Universität PotsdamBerlin/PotsdamGermany
  3. 3.F. Hoffmann-La Roche Ltd, pRED Pharmaceutical SciencesBaselSwitzerland
  4. 4.Department of Mathematics and Computer ScienceFreie Universität BerlinBerlinGermany
  5. 5.AbbVie GmbH & Co. KGLudwigshafen am RheinGermany
  6. 6.Institute of MathematicsUniversität PotsdamPotsdamGermany

Personalised recommendations