Journal of Pharmacokinetics and Pharmacodynamics

, Volume 39, Issue 5, pp 479–498 | Cite as

Combining patient-level and summary-level data for Alzheimer’s disease modeling and simulation: a beta regression meta-analysis

  • James A. Rogers
  • Daniel Polhamus
  • William R. Gillespie
  • Kaori Ito
  • Klaus Romero
  • Ruolun Qiu
  • Diane Stephenson
  • Marc R. Gastonguay
  • Brian Corrigan
Original Paper


Our objective was to develop a beta regression (BR) model to describe the longitudinal progression of the 11 item Alzheimer’s disease (AD) assessment scale cognitive subscale (ADAS-cog) in AD patients in both natural history and randomized clinical trial settings, utilizing both individual patient and summary level literature data. Patient data from the coalition against major diseases database (3,223 patients), the Alzheimer’s disease neruroimaging initiative study database (186 patients), and summary data from 73 literature references (representing 17,235 patients) were fit to a BR drug-disease-trial model. Treatment effects for currently available acetyl cholinesterase inhibitors, longitudinal changes in disease severity, dropout rate, placebo effect, and factors influencing these parameters were estimated in the model. Based on predictive checks and external validation, an adequate BR meta-analysis model for ADAS-cog using both summary-level and patient-level data was developed. Baseline ADAS-cog was estimated from baseline MMSE score. Disease progression was dependent on time, ApoE4 status, age, and gender. Study drop out was a function of time, baseline age, and baseline MMSE. The use of the BR constrained simulations to the 0–70 range of the ADAS-cog, even when residuals were incorporated. The model allows for simultaneous fitting of summary and patient level data, allowing for integration of all information available. A further advantage of the BR model is that it constrains values to the range of the original instrument for simulation purposes, in contrast to methodologies that provide appropriate constraints only for conditional expectations.


Alzheimer’s disease Disease progression Beta regression Meta-analysis Logistic Longitudinal Bayesian CAMD ADNI 


  1. 1.
    Agresti A (1990) Categorical data analysis. Wiley, New YorkGoogle Scholar
  2. 2.
    Ashford JW, Schmitt FA (2001) Modeling the time-course of alzheimer dementia. Curr Psychiatry Rep 3(1):20–28CrossRefPubMedGoogle Scholar
  3. 3.
    Ferrari S, Cribari-Neto F (2004) Beta regression for modelling rates and proportions. J Appl Stat 31(7):799–815CrossRefGoogle Scholar
  4. 4.
    Gastonguay MR, French JL, Heitjan DF, Rogers JA, Ahn JE, Ravva P (2010) Missing data in model-based pharmacometric applications: points to consider. J Clin Pharmacol 50 (Suppl 1):63SPubMedGoogle Scholar
  5. 5.
    Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis. Chapman & Hall/CRC, New YorkGoogle Scholar
  6. 6.
    Gelman A, Van MI, Verbeke G, Heitjan DF, Meulders M (2005) Multiple imputation for model checking: completed-data plots with missing and latent data. Biometrics 61(1):74–85CrossRefPubMedGoogle Scholar
  7. 7.
    Gillespie WR, Rogers JA, Ito K, Gastonguay MR (2009) Population dose-response model for adas-cog scores in patients with alzheimers disease by meta-analysis of a mixture of summary and individual data. In: American Conference on Pharmacometrics. MashantucketGoogle Scholar
  8. 8.
    Holford NH, Peace KE (1992) Methodologic aspects of a population pharmacodynamic model for cognitive effects in alzheimer patients treated with tacrine. Proc Natl Acad Sci 89(23): 11,466–11,470
  9. 9.
    Ito K, Ahadieh S, Corrigan B, French J, Fullerton T, Tensfeldt T (2010) Alzheimer’s disease working group: disease progression meta-analysis model in alzheimer’s disease. Alzheimers Dement 6(1):39–53. doi:10.1016/j.jalz.2009.05.665 CrossRefPubMedGoogle Scholar
  10. 10.
    Ito K, Corrigan B, Zhao Q, French J, Miller R, Soares H, Katz E, Nicholas T, Billing B, Anziano R, Fullerton T (2011) Alzheimer’s disease neuroimaging initiative: disease progression model for cognitive deterioration from alzheimer’s disease neuroimaging initiative database. Alzheimers Dement 7(2):151–160. doi:10.1016/j.jalz.2010.03.018 CrossRefPubMedGoogle Scholar
  11. 11.
    Kieschnick R, McCullough BD (2003) Regression analysis of variates observed on (0, 1): percentages, proportions and fractions. Stat Model 3:192–213CrossRefGoogle Scholar
  12. 12.
    Lambert PC, Sutton AJ, Burton PR, Abrams KR, Jones DR (2005) How vague is vague? a simulation study of the impact of the use of vague prior distributions in mcmc using winbugs. Stat Med 24(15):2401–2428. doi:10.1002/sim.2112 CrossRefPubMedGoogle Scholar
  13. 13.
    L’Ecuyer P, Simard R, Chen EJ, Kelton WD (2001) An object-oriented random-number package with many long streams and substreams. Oper Res 50:1073–1075CrossRefGoogle Scholar
  14. 14.
    Little RJA, Rubin DB (2002) Statistical analysis with missing data, 2nd edn. Wiley, New YorkGoogle Scholar
  15. 15.
    Ludden TM, Beal SL, Sheiner LB (1994) Comparison of the akaike information criterion, the schwarz criterion and the f test as guides to model selection. J Pharmacokinet Biopharm 22(5):431–445PubMedGoogle Scholar
  16. 16.
    Lunn D, Thomas A, Best N, Spiegelhalter D (2000) Winbugs—a bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337CrossRefGoogle Scholar
  17. 17.
    Mohs RC, Rosen WG, Davis KL (1983) The alzheimer’s disease assessment scale: an instrument for assessing treatment efficacy. Psychopharmacol Bull 19(3):448–450PubMedGoogle Scholar
  18. 18.
    Olkin I, Tate RF (1961) Multivariate correlation models with mixed discrete and continuous variables. Ann Math Stat 32(2):448–465CrossRefGoogle Scholar
  19. 19.
    R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN: 3-900051-07-0
  20. 20.
    Romero K, Corrigan B, Neville J, Kopko S, Cantillon M (2011) Striving for an integrated drug-development process for neurodegeneration: the coalition against major diseases. Neurodegener Dis Manag 1(5):379–385CrossRefGoogle Scholar
  21. 21.
    Romero K, de Mars M, Frank D, Anthony M, Neville J, Kirby L, Smith K, Woosley RL (2009) The coalition against major diseases: developing tools for an integrated drug development process for Alzheimer’s and Parkinson’s diseases. Clin Pharmacol Ther 86(4):365–367. doi:10.1038/clpt.2009.165 CrossRefPubMedGoogle Scholar
  22. 22.
    Rosen WG, Mohs RC, Davis KL (1984) A new rating scale for alzheimer’s disease. Am J Psychiatry 141(11):1356–1364PubMedGoogle Scholar
  23. 23.
    Samtani MN, Farnum M, Lobanov V, Yang E, Raghavan N, DiBernardo A, Narayan V (2012) Alzheimer’s disease neuroimaging initiative: an improved model for disease progression in patients from the Alzheimer’s disease neuroimaging initiative. J Clin Pharmacol 52(5): 629–644CrossRefPubMedGoogle Scholar
  24. 24.
    Stukel TA (1988) Generalized logistic models. J Am Stat Assoc 83(42):426–431CrossRefGoogle Scholar
  25. 25.
    Tsoularis A, Wallace J (2002) Analysis of logistic growth models. Math Biosci 179(1):21–55CrossRefPubMedGoogle Scholar
  26. 26.
    Williams-Faltaos D, Ying C, Wang Y, Gobburu J, Zhu H, Quantification of disease progression and drop-out for Alzheimer’s disease. Technical report, Food and Drug AdministrationGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • James A. Rogers
    • 1
  • Daniel Polhamus
    • 1
  • William R. Gillespie
    • 1
  • Kaori Ito
    • 2
  • Klaus Romero
    • 3
  • Ruolun Qiu
    • 2
  • Diane Stephenson
    • 3
  • Marc R. Gastonguay
    • 1
  • Brian Corrigan
    • 2
  1. 1.Metrum Research GroupTariffvilleUSA
  2. 2.Pfizer Global Research GroupGrotonUSA
  3. 3.Critical Path InstituteTucsonUSA

Personalised recommendations