Advertisement

Fractional kinetics in drug absorption and disposition processes

  • Aristides Dokoumetzidis
  • Panos Macheras
Article

Abstract

We explore the use of fractional order differential equations for the analysis of datasets of various drug processes that present anomalous kinetics, i.e. kinetics that are non-exponential and are typically described by power-laws. A fractional differential equation corresponds to a differential equation with a derivative of fractional order. The fractional equivalents of the “zero-” and “first-order” processes are derived. The fractional zero-order process is a power-law while the fractional first-order process is a Mittag–Leffler function. The latter behaves as a stretched exponential for early times and as a power-law for later times. Applications of these two basic results for drug dissolution/release and drug disposition are presented. The fractional model of dissolution is fitted successfully to datasets taken from literature of in vivo dissolution curves. Also, the proposed pharmacokinetic model is fitted to a dataset which exhibits power-law terminal phase. The Mittag–Leffler function describes well the data for small and large time scales and presents an advantage over empirical power-laws which go to infinity as time approaches zero. The proposed approach is compared conceptually with fractal kinetics, an alternative approach to describe datasets with non exponential kinetics. Fractional kinetics offers an elegant description of anomalous kinetics, with a valid scientific basis, since it has already been applied in problems of diffusion in other fields, and describes well the data.

Keywords

Fractional kinetics Anomalous kinetics Power-law 

References

  1. 1.
    West BJ, Deering W (1994) Fractal physiology for physicists: Levy statistics. Phys Rep 246:1–100. doi: 10.1016/0370-1573(94)00055-7 CrossRefGoogle Scholar
  2. 2.
    Kopelman R (1988) Fractal reaction kinetics. Science 241:1620–1626. doi: 10.1126/science.241.4873.1620 PubMedCrossRefGoogle Scholar
  3. 3.
    Wise ME (1985) Negative power functions of time in pharmacokinetics and their implications. J Phamacokinet Biopharmaceut 13:309–346. doi: 10.1007/BF01065658 CrossRefGoogle Scholar
  4. 4.
    Tucker GT, Jackson PR, Storey GC, Holt DW (1984) Amiodarone disposition: polyexponential, power and gamma functions. Eur J Clin Pharmacol 26:655–656. doi: 10.1007/BF00543506 PubMedCrossRefGoogle Scholar
  5. 5.
    Fuite J, Marsh R, Tuszynski J (2002) Fractal pharmacokinetics of the drug Miberfradil in the liver. Phys Rev E Stat Nonlinear Soft Matter Phys 66:021904. doi: 10.1103/PhysRevE.66.021904 Google Scholar
  6. 6.
    Marsh RE, Tuszyński JA (2006) Fractal Michaelis-Menten kinetics under steady state conditions: application to Mibefradil. Pharm Res 23:2760–2767. doi: 10.1007/s11095-006-9090-6 PubMedCrossRefGoogle Scholar
  7. 7.
    Macheras P (1996) A fractal approach to heterogeneous drug distribution: calcium pharmacokinetics. Pharm Res 13:663–670. doi: 10.1023/A:1016031129053 PubMedCrossRefGoogle Scholar
  8. 8.
    Kosmidis K, Karalis V, Argyrakis P, Macheras P (2004) Michaelis-Menten kinetics under spatially constrained conditions: application to Mibefradil pharmacokinetics. Biophys J 87:1498–1506. doi: 10.1529/biophysj.104.042143 PubMedCrossRefGoogle Scholar
  9. 9.
    Macheras P (1995) Carrier-mediated transport can obey fractal kinetics. Pharm Res 12:541–548. doi: 10.1023/A:1016201929304 PubMedCrossRefGoogle Scholar
  10. 10.
    Weiss M (1999) The anomalous pharmacokinetics of amiodarone explained by nonexponential tissue trapping. J Pharmacokinet Biopharm 27:383–396. doi: 10.1023/A:1020965005254 PubMedCrossRefGoogle Scholar
  11. 11.
    Phan G, Le Gall B, Deverre JR, Fattal E, Bénech H (2006) Predicting plutonium decorporation efficacy after intravenous administration of DTPA formulations: Study of pharmacokinetic-pharmacodynamic relationships in rats. Pharm Res 23:2030–2035. doi: 10.1007/s11095-006-9046-x PubMedCrossRefGoogle Scholar
  12. 12.
    Macheras P, Dokoumetzidis A (2000) On the heterogeneity of drug dissolution and release. Pharm Res 17:108–112. doi: 10.1023/A:1007596709657 PubMedCrossRefGoogle Scholar
  13. 13.
    Farin D, Avnir D (1992) Use of fractal geometry to determine effects of surface morphology on drug dissolution. J Pharm Sci 81:54–57. doi: 10.1002/jps.2600810111 PubMedCrossRefGoogle Scholar
  14. 14.
    Sokolov IM, Klafter J, Blumen A (2002) Fractional kinetics. Phys Today 55(11):48–55. doi: 10.1063/1.1535007 CrossRefGoogle Scholar
  15. 15.
    Podlubny I (1999) Fractional differential equations. Academic Press, San DiegoGoogle Scholar
  16. 16.
    Magin RL (2004) Fractional calculus in bioengineering. Crit Rev Biomed Eng 32:1–104. doi: 10.1615/CritRevBiomedEng.v32.10 PubMedCrossRefGoogle Scholar
  17. 17.
    Magin RL (2004) Fractional calculus in bioengineering, Part 2. Crit Rev Biomed Eng 32:105–193. doi: 10.1615/CritRevBiomedEng.v32.i2.10 PubMedCrossRefGoogle Scholar
  18. 18.
    Magin RL (2004) Fractional calculus in bioengineering, Part 3. Crit Rev Biomed Eng 32:195–377. doi: 10.1615/CritRevBiomedEng.v32.i34.10 PubMedCrossRefGoogle Scholar
  19. 19.
    Dokoumetzidis A, Macheras P (2006) A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. Int J Pharm 321:1–11. doi: 10.1016/j.ijpharm.2006.07.011 PubMedCrossRefGoogle Scholar
  20. 20.
    Macheras P, Argyrakis P (1997) Gastrointestinal drug absorption: is it time to consider heterogeneity as well as homogeneity? Pharm Res 14:842–847. doi: 10.1023/A:1012183313218 PubMedCrossRefGoogle Scholar
  21. 21.
    Chandrasekaran SK, Paul DR (1982) Dissolution-controlled transport from dispersed matrixes. J Pharm Sci 71:1399–1402. doi: 10.1002/jps.2600711222 PubMedCrossRefGoogle Scholar
  22. 22.
    Ritger L, Peppas NA (1987) A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:23–37. doi: 10.1016/0168-3659(87)90034-4 CrossRefGoogle Scholar
  23. 23.
    Ritger L, Peppas NA (1987) A simple equation for description of solute release. II. Fickian and anomalous release from swellable devices. J Control Release 5:37–42. doi: 10.1016/0168-3659(87)90035-6 CrossRefGoogle Scholar
  24. 24.
    Langenbucher F (1972) Linearization of dissolution rate curves by the Weibull distribution. J Pharm Pharmacol 24:979–981PubMedGoogle Scholar
  25. 25.
    Niclasson M, Graffner C, Nillson MI (1987) Assessment of in vivo drug dissolution by means of numerical deconvolution considering gastrointestinal availability. Intern J Pharmacol 40:165–171CrossRefGoogle Scholar
  26. 26.
    Podlubny I, Kacenak M (2005) Matlab implementation of the Mittag-Leffler function. MATLAB Central, Available online: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=8738
  27. 27.
    Blake GM, Fogelman I (2006) Theoretical model for the interpretation of BMD scans in patients stopping strontium ranelate treatment. J Bone Miner Res 21:1417–1424. doi: 10.1359/jbmr.060616 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of PharmacyQueen’s University of Belfast, Medical Biology CentreBelfastUK
  2. 2.Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of PharmacyUniversity of AthensAthensGreece

Personalised recommendations