Pharmacokinetic–Pharmacodynamic Modelling: History and Perspectives

Article

Abstract

A major goal in clinical pharmacology is the quantitative prediction of drug effects. The field of pharmacokinetic–pharmacodynamic (PK/PD) modelling has made many advances from the basic concept of the dose–response relationship to extended mechanism-based models. The purpose of this article is to review, from a historical perspective, the progression of the modelling of the concentration–response relationship from the first classic models developed in the mid-1960s to some of the more sophisticated current approaches. The emphasis is on general models describing key PD relationships, such as: simple models relating drug dose or concentration in plasma to effect, biophase distribution models and in particular effect compartment models, models for indirect mechanism of action that involve primarily the modulation of endogenous factors, models for cell trafficking and transduction systems. We show the evolution of tolerance and time-variant models, non- and semi-parametric models, and briefly discuss population PK/PD modelling, together with some example of more recent and complex pharmacodynamic models for control system and nonlinear HIV-1 dynamics. We also discuss some future possible directions for PK/PD modelling, report equations for general classes of novel semi-parametric models, as well as describing two new classes, additive or set-point, of regulatory, additive feedback models in their direct and indirect action variants

Keywords

pharmacokinetics pharmacodynamics modelling review history 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mager D., Wyska E., Jusko W. (2003). Diversity of mechanism-based pharmacodynamic models. Am. Soc. Pharmacol. Exp. Therapeut. 31:510–519Google Scholar
  2. 2.
    Tallarida R.J. (1984). Receptor theories and quantitative effect versus dose–concentration relationship. Drug Metab. Rev. 15:345–363PubMedCrossRefGoogle Scholar
  3. 3.
    Verotta D., Sheiner L.B. (1995). A general conceptual model for non-steady state pharmacokinetic/pharmacodynamic data. J. Pharmacokin. Biopharm. 23:1–4CrossRefGoogle Scholar
  4. 4.
    Dayneka N., Garg V., Jusko W. (1993). Comparison of four basic models of indirect pharmacodynamic responses. J. Pharmacokinet. Biopharm. 21:457–478CrossRefPubMedGoogle Scholar
  5. 5.
    Levy G. (1994). Mechanism-based pharmacodynamic modeling. Clin. Pharmacol. Therapeut. 56:356–358CrossRefGoogle Scholar
  6. 6.
    Verotta D. (1996). Concepts, properties, and applications of linear systems to describe the distribution, identify input, and control endogenous substances and drugs in biological systems. CRC Crit. Rev. Biomol. Eng. 24:73–139Google Scholar
  7. 7.
    D. Verotta. Semi-parametric direct and indirect action models for pharmacokinetics/pharmacodynamic data. In: Proceedings Society Computer Simulation Western Multiconference, Las Vegas, Nevada, USA, 1995.Google Scholar
  8. 8.
    Segre G. (1968). Kinetics of interaction between drugs and biological system. Il Farmaco Ed. Sci. 23:907–918Google Scholar
  9. 9.
    Levy G. (1966). Kinetics of pharmacologic effects. Clin Pharm Therapeut. 7:362–372Google Scholar
  10. 10.
    Levy G. (1964). Relationship between elimination rate of drugs and rate of decline of their pharmacological effect. J. Pharm. Sci. 53:343–343PubMedCrossRefGoogle Scholar
  11. 11.
    Levy G., Nelson E. (1965). Theoretical relationship between dose, elimination rate, and duration of pharmacologic effect of drugs. J. Pharm. Sci. 54:812Google Scholar
  12. 12.
    Levy G. (1965). Apparent potentiating effect of a second dose of drug. Nature 206:517–519Google Scholar
  13. 13.
    Wagner J. (1968). Kinetics of pharmacologic response. I. Proposed relationships between response and drug concentration in the intact animal and man. J. Theoret. Biol. 20:173–201CrossRefGoogle Scholar
  14. 14.
    Ariens E. (1964). The mode of action of biologically active compounds. In: De Stevens G (eds). Molecular Pharmacology. Academic Press, New YorkGoogle Scholar
  15. 15.
    Black J.W., Leff P. (1983). Operational models of pharmacological agonism. Proc. R. Soc. Lond. B. 220:141–162PubMedGoogle Scholar
  16. 16.
    Tuk B., Van Oostenbruggen M., Herben V.M.M. et al. (1999). Characterization of the pharmacodynamic interaction between parent drug and active metabolite in vivo: Midazolam and ∝-OH-midazolam. J. Pharmacol. Exp. Therapeut. 289:1067–1074Google Scholar
  17. 17.
    Van der Graaf P., Van Schaick E., Mathot R. et al. (1997). Mechanism-based pharmacokinetic–pharmacodynamic modeling of the effects of N 6-cyclopentylasenosine analogs on heart rate in rat: Estimation of in vivo operational affinity and efficacy at adenosine A1 receptors. J. Pharmacol. Exp. Therapeut. 283:809–816Google Scholar
  18. 18.
    Furchgott R. (1955). The pharmacology of vascular smooth muscle. Pharm. Res. 7:183–265Google Scholar
  19. 19.
    Ferguson J. (1939). The use of chemical potentials as indices of toxicity. Proc. Roy. Soc. London, s.B. 127:387–404CrossRefGoogle Scholar
  20. 20.
    Berman M., M.F. Weiss. SAAM manual. U.S. Department of Health, Education and Welfare, Public Health Service Publication No. 1703. Washington, DC, U.S. Government Printing Office, 200 pp. 1967.Google Scholar
  21. 21.
    Boston C., Greif P.C., Berman M. (1981). Conversational SAAM—An interactive program for kinetic analysis of biological systems. Comput. Programs Biomed. 1981: 111–119CrossRefGoogle Scholar
  22. 22.
    SAAM. In Series. Seattle, WA: SAAM Institute, Inc. http://www.saam.com/software/saam2/saam2software.htm.Google Scholar
  23. 23.
    Dahlstrom B., Paalzow L., Segre G. et al. (1978). Relation between morphine pharmacokinetics and Analgesia. J. Pharmacokinet. Biopharm. 6:41–53CrossRefPubMedGoogle Scholar
  24. 24.
    Levy G., Gibaldi M., Jusko W. (1969). Multicompartment pharmacokinetic models and pharmacologic effects. J. Pharm. Sci. 58:422–424PubMedCrossRefGoogle Scholar
  25. 25.
    Galeazzi R., Benet L., Sheiner L. (1976). Relationship between the pharmacokinetics and pharmacodynamics of procainamide. Clin. Pharmacol. Ther. 20:278–289PubMedGoogle Scholar
  26. 26.
    Kramer W., Kolibash A., Lewis R. et al. (1979). Pharmacokinetics of digoxin: Relationship between response intensity and predicted compartmental drug levels in man. J. Pharmacokinet. Biopharm. 7:47–61CrossRefPubMedGoogle Scholar
  27. 27.
    Mandema J., Veng-Pedersen P., Danhof M. (1991). Estimation of amobarbital plasma-effect site equilibration kinetics. Relevance of polyexponential conductance functions. J. Pharmacokinet. Biopharm. 19:617–634CrossRefPubMedGoogle Scholar
  28. 28.
    Sheiner L., Stanski D., Vozeh S. et al. (1979). Simultaneous modeling of pharmacokinetics and pharmacodynamics: Application to d-tubocurarine. Clin. Pharmacol. Ther. 25:358–371PubMedGoogle Scholar
  29. 29.
    Jusko W. (1971). Pharmacodynamics of chemotherapeutic effects: Dose–time–response relationships for phase-non-specific agents. J. Pharm. Sci. 60:892–895Google Scholar
  30. 30.
    Jusko W. (1973). A pharmacodynamic model for cell-cycle-specific chemotherapeutic agents. J. Pharmacokinet. Biopharm. 1:175–200CrossRefGoogle Scholar
  31. 31.
    Nagashima R., O’Reilly R., Levy G. (1969). Kinetics of pharmacologic effects in man: The anticoagulant action of warfarin. Clin. Pharmacol. Ther. 10:22–35PubMedGoogle Scholar
  32. 32.
    Sheiner L. (1969). Computer-aided long-term anticoagulation therapy. Comput. Biomed. Res. 2:507–518CrossRefPubMedGoogle Scholar
  33. 33.
    Theophanus T., Barile R. (1973). Multiple-dose kinetics of oral anticoagulants: Methods of analysis and optimised dosing. J. Pharm. Sci. 62:261–266PubMedCrossRefGoogle Scholar
  34. 34.
    Abbrecht P. O’Leary T., Behrendt D. (1982). Evaluation of a computer-assisted method for individualized anticoagulation: Retrospective an prospective studies with a pharmacodynamic model. Clin. Pharmacol. Ther. 32: 129–136PubMedCrossRefGoogle Scholar
  35. 35.
    O’Leary T., Abbrecht P. (1981). Predicting oral anticoagulant response using a pharmacodynamic model. Ann. Biomed. Eng. 9: 199–216PubMedCrossRefGoogle Scholar
  36. 36.
    Sharma A. (1998). Precursor-dependant indirect pharmacodynamic response model for tolerance and rebound phenomena. J. Pharm. Sci. 87:1577–1584CrossRefPubMedGoogle Scholar
  37. 37.
    Earp J., Krzyzanski W., Chakraborty A. et al. (2004). Assessment of drug interactions relevant to pharmacodynamic indirect response models. J. Pharmacokine. Pharmacodynam. 31:345–380CrossRefGoogle Scholar
  38. 38.
    Wald J. (1991). Two-compartment basophil cell trafficking model for methylprednisolone pharmacodynamics. J. Pharmacokinet. Biopharm. 19:521–536CrossRefPubMedGoogle Scholar
  39. 39.
    Kong A., Ludwig E., Slaughter R. et al. (1989). Pharmacokinetics and pharmacodynamic modeling of direct suppression effects of methylprednisolone on serum cortisol and blood histamine in human subjects. Clin. Pharmacol. Therpeut. 46:616–628Google Scholar
  40. 40.
    Dunn T., Ludwig E., Slaughter R. et al. (1991). Pharmacokinetics and pharmacodynamics of methylprednisolone in obese and on-obese men. Clin. Pharmacol. Therpeut. 50:536–549Google Scholar
  41. 41.
    Frey B., Walker C., Frey F. et al. (1984). Pharmacokinetics of three different prednisolone produrgs: effect on circulating lymphocyte subsets and function. J. Immunol. 133: 2479–2487PubMedGoogle Scholar
  42. 42.
    Munck A., Leung K. (1977). Glucocorticoid receptors and mechanisms of action of steroid hormones Receptors and Mechanisms of Action of Steroid Hormones. Marcel Dekker, New York pp. 311–397Google Scholar
  43. 43.
    Evans R. (1988). The steroid and thyroid hormone receptor superfamily. Science 240: 889–895PubMedCrossRefGoogle Scholar
  44. 44.
    Boudinot F., D’Ambrosio R., Jusko W. (1986). Receptor-mediated pharmacodynamics of prednisolone in the rat. J. Pharmacokinet. Biopharm. 14: 469–493CrossRefPubMedGoogle Scholar
  45. 45.
    Nichols A. (1989). Second generation model for prednisolone pharmacodynamics in the rat. J. Pharmacokinet. Biopharm. 17:209–227CrossRefPubMedGoogle Scholar
  46. 46.
    Sun Y., Jusko W. (1998). Transit compartments versus gamma distribution function to model signal transduction processes in pharmacodynamics. J. Pharm. Sci. 87:732–737CrossRefPubMedGoogle Scholar
  47. 47.
    Oosterhuis B., Braat M., Roos C. et al. (1986). Pharmacokinetic–pharmacodynamic modeling of terbutaline bronchodilation in asthma. Clin. Pharmacol. Therpeut 40:469–475Google Scholar
  48. 48.
    Mager D., Jusko W. (2001). Pharmacodynamic modeling of time-dependent transduction systems. Clin. Pharmacol. Therpeut. 70:210–216CrossRefGoogle Scholar
  49. 49.
    Lobo E., Balthasar J. (2002). Pharmacodynamic modeling of chemotherapeutic effects: Application of a transit compartment model to characterize methotrexate effects in vitro. AAPS Pharmaceut. Sci. 4:1–11CrossRefGoogle Scholar
  50. 50.
    Zahler R., Wachter P., Jatlow P. et al. (1982). Kinetics of drug effect by distributed lags analysis: An application to cocaine. Clin. Pharmacol. Therpeut. 31:775–782Google Scholar
  51. 51.
    Ekbad E., Licko V. (1984). A model eliciting transient responses. Am. J. Physiol. 246:R114–R121PubMedGoogle Scholar
  52. 52.
    Chow M., Ambre J., Ruo T. et al. (1985). Kinetics of cocaine distribution, elimination, and chronotropic effects. Clin. Pharmacol. Therpeutic. 38:318–324CrossRefGoogle Scholar
  53. 53.
    Hammarlund M., Odling B., Paalzow L. (1985). Acute tolerance to furosemide diuresis in humans. Pharmacokinetic–Pharmacodynamic modelling. J. Pharmacol. Exp. Therpeut. 233:447–453Google Scholar
  54. 54.
    Porchet H., Benowitz N., Sheiner L. (1988). Pharmacodynamic model of tolerance: Application to nicotine. J. Pharmacol. Exp. Therpeut. 244:231Google Scholar
  55. 55.
    Shi J., Benowitz N., Denaro C. et al. (1993). Pharmacokinetic–pharmacodynamic modeling of caffeine: Tolerance to pressor effects. Clin. Pharmacol. Therpeut. 53:6–14Google Scholar
  56. 56.
    Mandema J.W., Wada D. (1995). Pharmacodynamic model for acute tolerance development to the electroencephalographic effects of alfentanil in the rat. J. Pharmacol. Exp. Therpeut. 279:1035–1042Google Scholar
  57. 57.
    Shafer S.L., Siegel L.C., Cooke J.E. et al. (1988). Testing computer-controlled infusion pumps by simulation. Anesthesiology 68:261–266PubMedCrossRefGoogle Scholar
  58. 58.
    Shafer S.L., Gregg K.M. (1992). Algorithms to rapidly achieve and maintain stable drug concentrations at the site of drug effect with a computer controlled infusion pump. J. Pharmacokinet Biopharm. 20:147–169CrossRefPubMedGoogle Scholar
  59. 59.
    Verotta D. (1999). A general solution for non-parametric control of a linear system using computer controlled infusion pumps. IEEE Trans. Biomed. Eng. 46:44–50CrossRefPubMedGoogle Scholar
  60. 60.
    Bauer J., Balthasar J., Fung H. (1997). Application of pharmacodynamic modeling for designing time variant dosing regimens to overcome nitroglycerin tolerance in experimental heart failure. Pharm. Res. 14:114–145Google Scholar
  61. 61.
    Francheteau P., Steimer J., Dubray C. et al. (1991). Mathematical model for in vivo pharmacodynamics integrating fluctuation of the response: Application to the prolactin suppressant effect of the dopaminomimetic drug DCN203–922. J. Pharmacokinet. Biopharm. 19:287–309PubMedCrossRefGoogle Scholar
  62. 62.
    Lew K., Ludwig E., Milad M. et al. (1993). Gender-based effects on methylprednisolone pharmacokinetics and pharmacodynmamics. Clin. Pharmacol. Therpeut. 54: 402–414Google Scholar
  63. 63.
    Gries J., Benowitz N., Verotta D. (1996). Chronopharmacokinetics of nicotine. Clin. Pharmacol. Therpeut. 60:385–395CrossRefGoogle Scholar
  64. 64.
    Hull C., Van Beem H., and McLeod K. et al. (1978). A pharmacodynamic model for pancuronium. Brit. J. Anaesth 50:1113–1123PubMedCrossRefGoogle Scholar
  65. 65.
    Fuseau E. and Sheiner L. (1984). Simultaneous modeling of pharmacokinetic and pharmacodynamics with a nonparametric model. Clin. Pharmacol. Therpeut. 35:733–741Google Scholar
  66. 66.
    Unadkat J., Bartha F., and Sheiner L. (1986). Simultaneous modeling of pharmacokinetics and pharmacodynamics with nonparametric and dynamic models. Clin. Pharmacol. Therpeut. 40:86–93Google Scholar
  67. 67.
    Verotta D. and Sheiner L. (1987). Simultaneous modeling of pharmacokinetics and pharmacodynamics: An improved algorithm. Comput. Appl. Biostat 3:345–349Google Scholar
  68. 68.
    Verotta D., Beal S., and Sheiner L. (1989). Semiparametric approach to pharmacokinetic-pharmacodynamic data. Am. J. Physiol. 256:R1005–R1010PubMedGoogle Scholar
  69. 69.
    Verotta D. (1989). An inequality-constrained least-squares deconvolution method. J. Pharmacokinet. Biopharm. 17:269–289CrossRefPubMedGoogle Scholar
  70. 70.
    Veng-Pedersen P., Mandema J., and Danhof M. (1991). A system approach to pharmacodynamics. III: An algorithm and computer program, COLAPS, for pharmacodynamic modeling. J. Pharm. Sci. 80:488–495PubMedCrossRefGoogle Scholar
  71. 71.
    Tuk B., Danhof M., and Mandema J. (1997). The impact of arteriovenous concentration differences on pharmacodynamic parameter estimates. J. Pharmacokinet. Biopharm. 25:39–60CrossRefPubMedGoogle Scholar
  72. 72.
    Tuk B., Herben V., and Mandema J. et al. (1998). Relevance of arteriovenous concentration differences in pharmacokinetic–pharmacodynamic modeling of midazolam. J.Pharmacol. Exp. Therpeut. 284:202–207Google Scholar
  73. 73.
    Verotta D. and Sheiner L.B. (1991). Semiparametric analysis of non-steady-state pharmacodynamic data. J. Pharmacokin. Biopharm 19:691–712CrossRefGoogle Scholar
  74. 74.
    Troconiz I.F., Sheiner L.B. and Verotta D. (1994). Semiparametric models for drug interactions. J. Appl. Physiol 76:2224–2233PubMedGoogle Scholar
  75. 75.
    Holford N. (1990). Concepts and usefulness of pharmacokinetic–pharmacodynamic modeling. Fundament. Clin. Pharmacol. Therapeut 4:93–101CrossRefGoogle Scholar
  76. 76.
    Rowland M. (1985). Variability in Drug Therapy–Description, Estimation and Control. Raven Press Boks Ltd, New YorkGoogle Scholar
  77. 77.
    Sheiner L., Rosenberg B., and Melmon K. (1972). Modeling of individual pharmacokinetics for computer-aided drug dosage. Comput. Biomed. Res. 5:441–459CrossRefGoogle Scholar
  78. 78.
    Beal S. and Sheiner L.B. NONMEM I Users Guide. Technical Report, Division of Clinical Pharmacology, University of California at San Francisco, 1984.Google Scholar
  79. 79.
    Yuh L., Beal S. and Davidian M. et al. (1994). Population pharmacokinetic/pharmacodynamic methodology and applications: A bibliography. Biometrics 50:566–575PubMedCrossRefGoogle Scholar
  80. 80.
    Sheiner L. and Ludden T. (1992). Population pharmacokinetics/dynamics. Annu. Rev. Pharmacol. Toxicol. 32:185–209PubMedGoogle Scholar
  81. 81.
    Sheiner L. and Beal S. (1982). Bayesian individualisation of pharmacokinetics: Simple implementation and comparison with non-Bayesian methods. J. Pharm. Sci. 71:1344–1348PubMedCrossRefGoogle Scholar
  82. 82.
    Minto C. (1998). Expanding clinical applications of population pharmacodynamic modeling. Brit. J. Clin. Pharmaco 46:321–333CrossRefGoogle Scholar
  83. 83.
    Boeckmann A.J., Beal S.L., and Sheiner L.B. NONMEM V Users Guides. Technical Report, Division of Clinical Pharmacology, University of California at San Francisco, 1998.Google Scholar
  84. 84.
    WinNonmix® Pharsight. http://www.pharsight.com/products/winnonmix/index.php.Google Scholar
  85. 85.
    D. D’Argenio and A. Schumitzky. ADAPT II User’s Guide: Pharmacokinetic/Pharmacodynamic Systems Analysis Software. In Series ADAPT II User’s Guide: Pharmacokinetic/Pharmacodynamic Systems Analysis Software. Biomedical Simulations Resource, Los Angeles, 1997.Google Scholar
  86. 86.
    PopKinetics. SI, INC. http://www.saam.com/software/popKinetics/popKineticsSoftware.htm.Google Scholar
  87. 87.
    PKBUGS. MRC Biostatistics Unit, Cambridge, UK. http://www.mrc-bsu.cam.ac. uk/bugs/winbugs/pkbugs.shtml.Google Scholar
  88. 88.
    Fattinger K., Verotta D., and Porchet H. et al. (1996). Modelling a bivariate control system: LH and testosterone response to the GnRH antagonist Antide. Am. J. Physiol. 271: E775–E787PubMedGoogle Scholar
  89. 89.
    Zuideveld K., Maas H., and Treijtel N. et al. (2001). A set-point model with oscillatory behaviour predicts the time course of (8-)-OH-DPAT induced hypothermia. Am. J. Physiol. 281: R2059–R2071Google Scholar
  90. 90.
    Bridges N.A., Hindsmarsh P.C., and Pringle P.J. et al. (1993). The relationship between endogenous testosterone and gonadotropin secretion. Clin. Endocrinol 38:373–378CrossRefGoogle Scholar
  91. 91.
    Bonhoeffer S., May R.M. and Shaw G.M. et al. (1997). Virus dynamics and drug therapy. Proc. Natl. Acad. Sci. USA. 94:6971–6976CrossRefPubMedGoogle Scholar
  92. 92.
    Nowak M.A. and May R.M. (1991). Mathematical biology of HIV infections: Antigenetic variation and diversity threshold. Math. Biosci. 106:1–21CrossRefPubMedGoogle Scholar
  93. 93.
    Nowak M.A., Bonhoeffer S., and Shaw G.M. et al. (1997). Anti-viral drug treatment: Dynamics of resistance in free virus and infected cell population. J. Theoret. Biol. 184:203–217CrossRefGoogle Scholar
  94. 94.
    Wein L.M., DAmato R.M., and Perelson A.S. (1998). Mathematical analysis of antiretroviral therapy aimed at HIV-1 eradication or maintenance of low viral loads. J. Theoret. Biol 192: 81–98CrossRefGoogle Scholar
  95. 95.
    Stafford M.A., Corey L., and Cao Y. et al. (2000). Modelling plasma virus concentration during primary HIV infection. J. Theoret. Biol. 203: 285–301CrossRefGoogle Scholar
  96. 96.
    Y. Huang and L. Wu. Mechanistic PK/PD modeling of antiretroviral therapies in AIDS clinical trials. In Advanced Methods of Pharmacokinetic and Pharmacodynamic Systems Analysis, Vol. III. Kluwer Academic Publishers, Boston, 2004, pp. 221–238.Google Scholar
  97. 97.
    Nowak M.A. and May R.M. (1992). Coexistence and competition in HIV infections. J. Theoret. Biol. 159:329–342CrossRefGoogle Scholar
  98. 98.
    Perelson A.S. and Essunger P. (1997). Decay characteristics of HIV-1 infected compartments during combination therapy. Nature 387:188–191CrossRefPubMedGoogle Scholar
  99. 99.
    Perelson A.S., Neumann A.U., and Markowitz M. et al. (1996). HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 271:1582–1587PubMedCrossRefGoogle Scholar
  100. 100.
    Wu H. and Ding A.A. (1999). Population HIV-1 dynamics in vivo: Applicable models and inferential tools for virological data from AIDS clinical trials. Biometrics 55:410–418CrossRefPubMedGoogle Scholar
  101. 101.
    Ding A.A. and Wu H. (2000). A comparison study of models and fitting procedures for biphasic viral dynamics in HIV-1 infected patients treated with antiviral therapies. Biometrics 56:293–300CrossRefPubMedGoogle Scholar
  102. 102.
    Verotta D. and Schaedeli F. (2002). Non-linear dynamics models characterizing long-term virological data from AIDS clinical trials. Math. Biosci. 176: 163–183CrossRefPubMedMathSciNetGoogle Scholar
  103. 103.
    May R.M. (1987). Nonlinearity and complex behavior in simple ecological and epidemiological models. Perspect. Biol. Dynam. Theoret. Med 504:1–15Google Scholar
  104. 104.
    D. Verotta. Models and estimation methods for clinical HIV-1 data. J. Comput. Appl. Math., in press.Google Scholar
  105. 105.
    Efron B. and Feldman D. (1991). Compliance as an explanatory variable in clinical trial. J. Am. Stat.Assoc 86:9–17CrossRefGoogle Scholar
  106. 106.
    Urquhart J. and De Klerk E. (1998). Contending paradigms for the interpretation of data on patient compliance with therapeutic drug regimens. Stat. Med. 17:251–267; discussion 387–259CrossRefPubMedGoogle Scholar
  107. 107.
    Homer. Iliad, Book XIII; c. 850 BC.Google Scholar
  108. 108.
    C. M. Metzler. A user’s manual for NONLIN. The Upjohn Co. Techn. Rep. 7292/69/7292/005. Kalama 700. Mich., 1969.Google Scholar
  109. 109.
    Gelman A., Carlin J.B., and Stern H. et al. (1995). Bayesian Data Analysis. Chapman & Hall, LondonGoogle Scholar
  110. 110.
    Distefano-III J.J. and Landaw E.M. Multiexponential, multicompartmental, and noncompartmental modeling. I. Methodological limitations and physiological interpretations. Am. J. Physiol. Regulat. Integrat. Comp. Physiol. 15(1984).Google Scholar
  111. 111.
    Verotta D. (2003). Volterra series in pharmacokinetics and pharmacodynamic. J. Pharmacokinet. Pharmacodynam 30:337–362CrossRefGoogle Scholar
  112. 112.
    Volterra V. (1959). Theory of Functionals and of integral and Integro-Differential Equations. Dover, New YorkGoogle Scholar
  113. 113.
    Marmarelis V.Z. (1993). Identification of nonlinear biological systems using laguerre expansions of kernels. Ann. Biomed. Eng. 21:573–589PubMedCrossRefGoogle Scholar
  114. 114.
    C. DeBoor.A Practical Guide to Splines, 1978.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Biopharmaceutical SciencesUniversity of CaliforniaSan FranciscoUSA
  2. 2.Department of BiostatisticsUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations