Robust Population Pharmacokinetic Experiment Design

  • Michael G. Dodds
  • Andrew C. Hooker
  • Paolo Vicini

The population approach to estimating mixed effects model parameters of interest in pharmacokinetic (PK) studies has been demonstrated to be an effective method in quantifying relevant population drug properties. The information available for each individual is usually sparse. As such, care should be taken to ensure that the information gained from each population experiment is as efficient as possible by designing the experiment optimally, according to some criterion. The classic approach to this problem is to design “good” sampling schedules, usually addressed by the D-optimality criterion. This method has the drawback of requiring exact advanced knowledge (expected values) of the parameters of interest. Often, this information is not available. Additionally, if such prior knowledge about the parameters is misspecified, this approach yields designs that may not be robust for parameter estimation. In order to incorporate uncertainty in the prior parameter specification, a number of criteria have been suggested. We focus on ED-optimality. This criterion leads to a difficult numerical problem, which is made tractable here by a novel approximation of the expectation integral usually solved by stochastic integration techniques. We present two case studies as evidence of the robustness of ED-optimal designs in the face of misspecified prior information. Estimates from replicate simulated population data show that such misspecified ED-optimal designs recover parameter estimates that are better than similarly misspecified D-optimal designs, and approach estimates gained from D-optimal designs where the parameters are correctly specified.


modeling optimal experiment design population kinetics pharmacokinetics simulation ED-optimality D-optimality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Center for Drug Evaluation and Research (CDER). Guidance for Industry: Population Pharmacokinetics (1999).Google Scholar
  2. 2.
    Holford, N. H., Kimko, H. C., Monteleone, J. P., Peck, C. C. 2000Simulation of clinical trialsAnnu. Rev. Pharmacol. Toxicol.40209234CrossRefPubMedGoogle Scholar
  3. 3.
    D’Argenio, D. Z. 1981Optimal sampling times for pharmacokinetic experimentsJ. Pharmacokinet. Biopharm.9739756CrossRefPubMedGoogle Scholar
  4. 4.
    Hooker, A. C., Foracchia, M., Dodds, M. G., Vicini, P. 2003An evaluation of population D-optimal designs via pharmacokinetic simulationsAnn. Biomed. Eng.3198111CrossRefPubMedGoogle Scholar
  5. 5.
    Duffull, S. B., Retout, S., Mentré, F. 2002The use of simulated annealing for finding optimal population designsComp. Meth. Prog. Biomed.692535CrossRefGoogle Scholar
  6. 6.
    Duffull, S. B., Mentré, F., Aaron, L. 2001Optimal design of a population pharmacokinetic experiment for ivabradinePharm. Res.188389CrossRefPubMedGoogle Scholar
  7. 7.
    Tod, M., Rocchisani, J.-M. 1996Implementation of OSPOP, an algorithm for the estimation of optimal sampling times in pharmacokinetics by the ED, EID and API criteriaComp. Meth. Prog. Biomed.501322CrossRefGoogle Scholar
  8. 8.
    Retout, S., Duffull, S., Metre, F. 2001Development and implementation of the population Fisher information matrix for the evaluation of population pharmacokinetic designsComp. Method. Prog. Biomed.65141151CrossRefGoogle Scholar
  9. 9.
    Foracchia, M., Hooker, A., Vicini, P., Ruggeri, A. 2004POPED, a software for optimal experiment design in population kineticsComput. Method. Prog. Biomed742946CrossRefGoogle Scholar
  10. 10.
    Larsen, R. J., Marx, M. L. 1986An Introduction to Mathematical Statistics and its Application2Prentice-HallEnglewood Cliffs, NJGoogle Scholar
  11. 11.
    Sitter, R. R. 1992Robust designs for binary dataBiometrics4811451155Google Scholar
  12. 12.
    Landaw, E. M. 1985Robust sampling designs for compartmental models under large prior eigenvalue uncertaintiesEisendfeld, J.Lisi, C. eds. Mathematics and Computers in Biomedical ApplicationsElsevier ScienceNorth Holland181187Google Scholar
  13. 13.
    Pronzato, L., Walter, E. 1985Robust experiment design via stochastic approximationMath. Biosci.75103120CrossRefGoogle Scholar
  14. 14.
    Tod, M., Rocchisani, J.-M. 1997Comparison of ED, EID and API criteria for the robust optimization of sampling times in pharmacokineticsJ. Pharmacokin. Biopharm.25515537CrossRefGoogle Scholar
  15. 15.
    Mentré, F., Dubruc, C., Thenot, J. P. 2001Population pharmacokinetic analysis and optimization of the experimental design for mizolastine solution in childrenJ. Pharmacokinet. Pharmacodyn.28299319CrossRefPubMedGoogle Scholar
  16. 16.
    Fedorov, V. V. 1972Theory of Optimal ExperimentsAcademic PressNew York, NYGoogle Scholar
  17. 17.
    Laird, N., Lange, N., Stram, D. 1987Maximum likelihood computations with repeated measures: application of the EM algorithmJ. Am. Stat. Assoc.8297105Google Scholar
  18. 18.
    Davidian, M., Giltinan, D. M. 1995Nonlinear Models for Repeated Measurement DataChapman and HallNew YorkGoogle Scholar
  19. 19.
    Merle, Y., Mentré, F. 1995Bayesian design criteria: Computation, comparison, and application to a pharmacokinetic and a pharmacodynamic modelJ. Pharmacokinet. Biopharm.1101125Google Scholar
  20. 20.
    Vonesh, E. F., Chinchilli, V. M. 1997Linear and Nonlinear Models for the Analysis of Repeated MeasurementsMarcel DekkerNew YorkGoogle Scholar
  21. 21.
    Fedorov, V. V., Hackl, P. 1997Model Oriented Design of ExperimentsSpringerNew YorkGoogle Scholar
  22. 22.
    S. L. Beal and L. B. Sheiner. NONMEM user’s guide. Technical report, University of California, San Francisco (1992).Google Scholar
  23. 23.
    Peck, C. C., Beal, S. L., Sheiner, L. B., Nichols, A. I. 1984Extended least squares nonlinear regression: A possible solution to the “choice of weights” problem in analysis of individual pharmacokinetic parametersJ. Pharmacokin. Biopharm.5545557CrossRefGoogle Scholar
  24. 24.
    Mentré, F., Mallet, A., Baccar, D. 1997Optimal design in random-effects regression modelsBiometrika84429442CrossRefGoogle Scholar
  25. 25.
    Bell, B. M. 2001Approximating the marginal likelihood estimate for models with random parametersAppl. Math. Comput.1195775CrossRefGoogle Scholar
  26. 26.
    Merlé, Y., Tod, M. 2001Impact of pharmacokinetic-pharmacodynamic model linerization on the accuracy of population information matrix and optimal designsJPKPD28363387Google Scholar
  27. 27.
    Box, G. E. P., Lucas, H. L. 1959Design of experiments in nonlinear situationsBiometrika467790Google Scholar
  28. 28.
    Tod, M., Mentré, F., Merle, Y., Mallet, A. 1998Robust optimal design for the estimation of hyperparameters in population pharmacokineticsJ. Pharmacokinet. Biopharm.26689716CrossRefPubMedGoogle Scholar
  29. 29.
    Carlin, B. P., Louis, T. A. 2000Bayes and Empirical Bayes Methods for Data AnalysisChapman & Hall/CRCNew YorkGoogle Scholar
  30. 30.
    Laplace, P. S. 1986Memoir on the probability of the causes of events (English translation of the 1774 French original by Stigler SM)Stat. Sci1364378Google Scholar
  31. 31.
    Tierney, L., Kadane, J. B. 1986Accurate approximations for posterior moments and marginal densitiesJ. Am. Stat. Assoc.818286Google Scholar
  32. 32.
    E. F. Vonesh. A note on the use of Laplace’s approximation for nonlinear mixed-effects models. Biometrika :447–452 (1996).Google Scholar
  33. 33.
    Chait, A., Foster, D., Miller, D. G., Bierman, E. L. 1981Acceleration of low-density lipoprotein catabolism in man by total parenteral nutritionProc. Soc. Exp. Biol. Med.16897104PubMedGoogle Scholar
  34. 34.
    Landaw, E. M. 1985Optimal design for individual parameter estimation in pharmacokineticsRaven PressNew YorkGoogle Scholar
  35. 35.
    Argenio, D. Z. D 1990Incorporating prior parameter uncertainty in the design of sampling schedules for pharmacokinetic parameter estimation experimentsMath. Biosci99105118CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Michael G. Dodds
    • 1
    • 2
  • Andrew C. Hooker
    • 1
    • 3
  • Paolo Vicini
    • 1
  1. 1.Resource Facility for Population Kinetics, Department of BioengineeringUniversity of WashingtonSeattleUSA
  2. 2.Pre-Clinical DevelopmentZymoGenetics, IncSeattleUSA
  3. 3.Division of Pharmacokinetics and Drug TherapyUppsala University, Biomedical CentreUppsalaSweden

Personalised recommendations