Skip to main content
Log in

Functional Applications of Aloe vera on Textiles: A Review

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Aloe vera is one of the oldest medicinal plants in human history. It exhibits 200 or more different biologically-active substances and has attracted many researchers into its potential applications. Researchers have also noted that Aloe vera has fewer adverse effects on human health than other alternative herbal medicines. Aloe vera leaves contain acemannan which is the key functional component. Acemannan is a long-chain polymer consisting of randomly acetylated linear d-mannopyranosyl units and has immune modulation, antibacterial, antifungal and antitumor properties. Due to this functional attribute, the Aloe vera plant is known as a “healing plant”. Researchers claim that Aloe vera treatment can speed wound healing, offer UV protection, and has anti-oxidant and anti-microbial properties. Historically, Aloe vera has been used for a variety of medicinal purposes. Aloe vera contains a moisturizing agent for which it is used in cosmetics. Aloe gel is also used in computer memory hardware to reduce electronic waste. Recently Aloe vera are extensively used to prepare the different types textile composite which are involved in the field of wound healing, tissue engineering, medical textile, health care textiles, curative garments, cosmetotextiles, UV protective textiles, wearable electronic textiles and so on. Aloe vera is used in pre-treatment and printing due to its succulent enzymatic and gummy characteristics. Aloe gel also contains a salty substance that allows its use in natural, eco-friendly dyeing. This review considers the many actual and potential applications of Aloe vera based textile composite materials for therapeutic and other purposes.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Lanka S (2018) A reviews on Aloe vera the wonder medicinal plant. J Drug Deliv Ther 8(5):94–99

    Article  CAS  Google Scholar 

  2. Sánchez-Machado DI, López-Cervantes J (2017) Aloe vera: ancient knowledge with new frontiers. Trends Food Sci Technol 61:94–102

    Article  CAS  Google Scholar 

  3. Sahu PK, Giri DD, Singh R, Pandey P, Gupta S, Shrivastava AK, Ajay K, Pandey KD (2013) Therapeutic and medicinal uses of Aloe vera: a Review. Pharmacol Pharm 4:599–610

    Article  CAS  Google Scholar 

  4. Salehi B, Albayrak S, Antolak H, Kręgiel D, Pawlikowska E, Sharifi-Rad M, Uprety Y, Fokou PVT, Yousef Z, Zakaria ZA, Varoni EM, Sharopov F, Martins N, Marcello I, Sharifi-Rad J (2018) Aloe genus plants: from farm to food applications and phyto pharmacotherapy. Int J Mol Sci 19(9):2843

    Article  PubMed Central  CAS  Google Scholar 

  5. Sharma P, Kharkwal AC, Kharkwal H, Abdin MZ, Varma A (2014) A Review on pharmacological properties of Aloe vera. Int J Pharm Sci Rev Res 29(2):31–37

    Google Scholar 

  6. Eshun K, He Q (2004) Aloe vera: a valuable ingredient for the food, pharmaceutical and cosmetic industries – a review. Crit Rev food Sci 44:91–96

    Article  Google Scholar 

  7. Choi S, Chung MH (2003) A reviews on the relationship between Aloe vera components and their biologic effects. Semin Integr Med 1(1):53–62

    Article  Google Scholar 

  8. Hamman JH (2008) Composition and applications of Aloe vera leaf gel. Molecules 13:1599–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ni Y, Tuner D, Yates KM, Tizard I (2004) Isolation and characterization of structural components of Aloe vera L. leaf pulp. Int Immunopharmacol 4:1745–1755

    Article  CAS  PubMed  Google Scholar 

  10. Antherton P (1998) Aloe vera: magic or medicine? Nurs Stand 12(41):49–54

    Article  Google Scholar 

  11. Shelton MS (1991) Aloe vera, its chemical and therapeutic properties. Int J Dermatol 30(10):679–683

    Article  CAS  PubMed  Google Scholar 

  12. Reynolds T, Dweck AC (1999) Aloe vera leaf gel, a review update. J Ethnopharmacol 68(1–3):3–37

    Article  CAS  PubMed  Google Scholar 

  13. Boudreau MD, Beland FA (2006) An evaluation of the biological and toxicological properties of Aloe Barbadensis (Miller), Aloe vera. J Environ Sci Health C 24(1):103–154

    Article  CAS  Google Scholar 

  14. Coats BC (1979) The silent healer: a modern study of Aloe vera. Garland, Texas

    Google Scholar 

  15. Vogler BK, Ernst E (1999) Aloe vera: a systematic review of its clinical effectiveness. Br J Gen Pract 49(447):823–828

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rodrıguez DJ, Castillo DH, Garcıa RR, Sánchez JLA (2005) Antifungal activity in vitro of Aloe vera pulp and liquid fraction against plant pathogenic fungi. Ind Crops Prod 21(1):81–87

    Article  Google Scholar 

  17. Femenia A, Sanchez ES, Simal S, Rosello C (1999) Compositional features of polysaccharides from Aloe vera (Aloe barbadensis Miller) plant tissues. Carbohydr Polym 39:109–117

    Article  CAS  Google Scholar 

  18. Joshi SP (1997) Chemical constituents and biological activity of aloe barbadensis-a review. J Med Aromat Plants 20:768–773

    Google Scholar 

  19. Marshall JM (1990) Aloe vera gel: what is the evidence? Pharm J 24:360–362

    Google Scholar 

  20. Baker OT (1975) The amazing ancient to modern useful plant Aloe vera: amazing plant of the magic valley. R. Prevost, Lemon Grove

    Google Scholar 

  21. Surjushe A, Vasani R, Saple DG (2008) Aloe Vera: a short review. Indian J Dermatol 53(4):163–166

    Article  PubMed  PubMed Central  Google Scholar 

  22. Grindlay D, Reynolds T (1986) The Aloe vera phenomenon: a review of the properties and modern uses of the leaf parenchyma gel. J Ethnopharmacol 16(2–3):117–151

    Article  CAS  PubMed  Google Scholar 

  23. Davis RH, Di Donato JJ, Hartman GM, Hass RC (1994) Anti-inflammatory and wound healing activity of a growth substance in Aloe vera. J Am Podiatr Med Assoc 84(2):77–81

    Article  CAS  PubMed  Google Scholar 

  24. Park Y, Lee S (2006) New perspectives on aloe. Springer, New York

    Book  Google Scholar 

  25. Heggers JP, Kucukcelebi A, Listengarten D, Jill S, Ko F, Broemeling ID, Robson MC, Winters WD (1996) Beneficial effect of Aloe on wound healing in an excisional wound healing model. J Altern Complement Med 2(2):271–277

    Article  CAS  PubMed  Google Scholar 

  26. Dal’Belo SE, Gaspar LR, Maia Campos PMBG (2006) Moisturizing effect of cosmetic formulations containing Aloe vera extract in different concentrations assessed by skin bioengineering techniques. Skin Res Technol 12:241–246

    Article  PubMed  Google Scholar 

  27. Ahlawat KS, Khatkar BS (2011) Processing, food applications and safety of Aloe vera products: a review. J Food Sci Techno 48(5):525–533

    Article  CAS  Google Scholar 

  28. Steenkamp V, Stewart MJ (2007) Medicinal applications and toxicological activities of Aloe products. Pharm Biol 45(5):411–420

    Article  CAS  Google Scholar 

  29. Amanuel L, Teferi X (2017) Textile bio processing using Aloe gel. Ind Eng Manage 6(2):1–5

    Google Scholar 

  30. Klaus S (2001) All round answer to problem microbes. Int Dyer 6:17–19

    Google Scholar 

  31. Ali SW, Purwar R, Joshi M, Rajendran S (2014) Antibacterial properties of Aloe vera gel-finished cotton fabric. Cellulose 21(3):2063–2072

    Article  CAS  Google Scholar 

  32. Ibrahim W, Sarwar Z, Abid S, Munir U, Azeem A (2017) Aloe vera leaf gel extract for antibacterial and softness properties of cotton. J Text Sci Engg 7(3):1–6

    Google Scholar 

  33. Xu Y, Deng Y (2011) Study on preparation and properties of cotton fabric modified by anthraquinone extract from Aloe. J Adv Mater 287–290:2705–2708

    Google Scholar 

  34. Jothi D (2009) Experimental study on antimicrobial activity of cotton fabric treated with Aloe gel extract from Aloe vera plant for controlling the Staphylococcus aureus (bacterium). Afr J Microbiol Res 3(5):228–232

    Google Scholar 

  35. Das S, Das A, Bhavya T, Nivashini SR (2019) Molecular characterisation and antibacterial activity of Aloe barbadensis miller on textiles. J Text Inst. https://doi.org/10.1080/00405000.2019.1686268

    Article  Google Scholar 

  36. Ghayempour S, Montazer M, Rad MM (2016) Simultaneous encapsulation and stabilization of Aloe vera extract on cotton fabric for wound dressing application. RSC Adv 6:111895–111902

    Article  CAS  Google Scholar 

  37. Mondal MIH, Saha J (2019) Antimicrobial, UV resistant and thermal comfort properties of chitosan- and Aloe vera-modified cotton woven fabric. J Polym Environ 27:405–420

    Article  CAS  Google Scholar 

  38. Khurshid MF, Ayyoob M, Asad M, Shah SNH (2015) Assessment of eco-friendly natural antimicrobial textile finish extracted from Aloe vera and Neem plants. Fibres Text East Eur 114(6):120–123

    Article  CAS  Google Scholar 

  39. Krishnaveni V, Aparna B (2014) Microencapsulation of copper enriched Aloe gel curative garment for atopic dermatitis. Indian J Tradit Know 13(4):795–803

    Google Scholar 

  40. Selvi BT, Rajendren R, Nithyalakshmi B, Gayathirignaneswari S (2011) Antimicrobial activity of cotton fabric treated with Aloe vera extract. Int J Appl Environ Res 6(2):127–131

    Google Scholar 

  41. Nadiger VG, Shukla SR (2015) Antimicrobial activity of silk treated with Aloe-vera. Fibres Polym 16(5):1012–1019

    Article  CAS  Google Scholar 

  42. Ulbricht C, Armstrong J, Basch E, Basch S, Bent S, Dacey C (2007) An evidence-based systematic review of Aloe vera by the natural standard research collaboration. J Herb Pharmacother 7(3–4):279–323

    PubMed  Google Scholar 

  43. Visuthikosol V, Chowchuen B, Sukwanarat Y, Sriurairatana S, Boonpucknavig V (1995) Effect of Aloe vera gel to healing of burn wound a clinical and histologic study. J Med Assoc Thai 78(8):403–409

    CAS  PubMed  Google Scholar 

  44. Hollinger JO, Hart CE, Hirsch SN, Lynch SL, Friedlaender GE (2008) Recombinant human platelet-derived growth factor: biology and clinical applications. J Bone Joint Surg Am 90(Suppl 1):48–54

    Article  PubMed  Google Scholar 

  45. Ramesh P, Prakash C, Palaniswamy NK, Sukumar N, Sengottuvelu S (2017) Development and characterization of bamboo based wound dressing coated with natural extracts of curcumin, Aloe vera and chitosan enhanced with recombinant human epidermal growth factor and in vivo evaluation for wistar albino wounded rats. Int Res J Pharm 8(3):50–55

    Article  CAS  Google Scholar 

  46. Galehdari H, Negahdari S, Kesmati M, Rezaie A, Shariati G (2016) Effect of the herbal mixture composed of Aloe vera, Henna, Adiantumcapillus-veneris, and Myrrha on wound healing in streptozotocin-induced diabetic rats. BMC Complement Med Res 16(1):1–9

    Google Scholar 

  47. Tizard IR, Carpenter RH, McAnalley BH, Kemp MC (1989) the biological activities of mannans and related complex carbohydrates. Mol Biother 1(6):290–296

    CAS  PubMed  Google Scholar 

  48. Guyton AC (1991) Textbook of medical physiology, 8th edn. WB Saunders, Philadelphia

    Google Scholar 

  49. Uslu I, Aytimur A (2012) Production and characterization of poly (vinyl alcohol)/poly (vinylpyrolidone) iodine/poly(ethylene glycol) electrospun fibers with (Hydroxypropyl) methyl cellulose and Aloe vera as promising material for wound dressing. J Appl Polym Sci 124:3520–3524

    Article  CAS  Google Scholar 

  50. Ahmadi A (2012) Potential prevention: Aloe vera mouthwash may reduce radiation-induced oral mucositis in head and neck cancer patients. Chin J Integr Med 18(8):635–640

    Article  CAS  PubMed  Google Scholar 

  51. Atiba A, Ueno H, Uzuka Y (2011) The effect of Aloe vera oral administration on cutaneous wound healing in type 2 diabetic rats. J Vet Med Sci 73(5):583–589

    Article  PubMed  Google Scholar 

  52. Gupta B, Agarwal R, Alam MS (2014) Antimicrobial and release study of drug loaded PVA/PEO/CMC wound dressings. J Mater Sci 25:1613–1622

    CAS  Google Scholar 

  53. Tummalapalli M, Berthet M, Verrier B, Deopura BL, Alam MS, Gupta B (2016) Composite wound dressings of pectin and gelatin with Aloe vera and curcumin as bioactive agents. Int J Biol Macromol 82:104–113

    Article  CAS  PubMed  Google Scholar 

  54. Anjum S, Gupta A, Sharma D, Gautam D, Bhan S, Sharma A, Kapil A, Gupta B (2016) Development of novel wound care systems based on nanosilver nanohydrogels of polymethacrylic acid with Aloe vera and curcumin. Mater Sci Eng C 64:157–166

    Article  CAS  Google Scholar 

  55. Balekar N, Katkam NG, Nakpheng T, Jehtae K, Srichana T (2012) Evaluation of the wound healing potential of Wedelia trilobata (L.) leaves. J Ethnopharmacol 141(3):817–824

    Article  PubMed  Google Scholar 

  56. Schafer M, Werner S (2007) Transcriptional control of wound repair. Annu Rev Cell Dev Biol 23:69–92

    Article  CAS  PubMed  Google Scholar 

  57. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321

    Article  CAS  PubMed  Google Scholar 

  58. Adetutu A, Morgan WA, Corcoran O (2011) Ethnopharmacological survey and in vitro evaluation of wound-healing plants used in South-western Nigeria. J Ethnopharmacol 137(1):50–56

    Article  PubMed  Google Scholar 

  59. Davis RH, Kabbani JM, Maro NP (1987) Aloe vera and wound healing. J Am Podiatr Med Assoc 77:165–169

    Article  CAS  PubMed  Google Scholar 

  60. Zhang L, Tizard IR (1996) Activation of a mouse macrophage cell line by acemannan: the major carbohydrate fraction from Aloe vera. Immunopharmacology 35:119–128

    Article  CAS  PubMed  Google Scholar 

  61. Rossiter H, Barresi C, Pammer J, Rendl M, Haigh J, Wagner E (2004) Loss of vascular endothelial growth factor a activity in murine epidermal keratinocytes delays wound healing and inhibits tumor formation. Cancer Res 64:3508–4351

    Article  CAS  PubMed  Google Scholar 

  62. Chokboribal J, Tachaboonyakiat W, Sangvanich P, Ruangpornvisuti V, Jettanacheawchankit S, Thunyakitpisal P (2015) Deacetylation affects the physical properties and bioactivity of acemannan, an extracted polysaccharide from Aloe vera. Carbohyd Polym 133:556–566

    Article  CAS  Google Scholar 

  63. Xing W, Guo W, Zou CH, Fu TT, Li XY, Zhu M, Qui JH, Song J, Dong CH, Li Z, Xiao Y, Yuan PS, Huang H, Xu X (2015) Acemannan accelerates cell proliferation and skin wound healing through AKT/mTOR signaling pathway. J Dermatol Sci 79:101–109

    Article  CAS  PubMed  Google Scholar 

  64. Barrantes E, Guinea MA (2003) Inhibition of collagenase and metalloproteinase by aloins and Aloe gel. Life Sci 72(7):843–850

    Article  CAS  PubMed  Google Scholar 

  65. Heggie S, Bryant GP, Tripcony L, Keller J, Rose P, Glendenning M, Heath J (2002) A phase III study on the efficacy of topical Aloe vera gel on irradiated breast tissue. Cancer Nurs 25(6):442–451

    Article  PubMed  Google Scholar 

  66. Roshan P (2014) Functional finishes for textiles: improving comfort, performance and protection. Woodhead Publishing Series in Textiles, Elsevier, Amsterdam

    Google Scholar 

  67. Ripoll L, Bordes C, Etheve S, Elaissari A, Fessi H (2010) Cosmeto-textile from formulation to characterization: an overview. Polymers 10(1):1–34

    Google Scholar 

  68. Benmoussa D, Molnar K, Hannache H, Cherkaroi O (2016) Development of thermo-regulating fabric using microcapsules of phase change material. Mol Cryst Liq Crys 27(1):163–169

    Article  CAS  Google Scholar 

  69. Fisher G (2002) Medical and hygiene textiles – continuing in good health. Tech Text Int 11(3):10–16

    Google Scholar 

  70. Czajka R (2005) Development of medical textile market. Fibres Text East Eur 13(1):13–15

    Google Scholar 

  71. Anon R (2005) Microencapsulation: for enhanced textile performance. Perform Appar Mark 12:21–39

    Google Scholar 

  72. Kan CW, Yuen CWM (2005) Cosmetic textiles. Text Asia 36(6):29–35

    Google Scholar 

  73. Cheng SY, Yuen CWM, Kan CW, Cheuk KKL, Tang JCO (2010) Systematic characterization of cosmetic textiles. Text Res J 80(6):524–536

    Article  CAS  Google Scholar 

  74. Bajer D, Janczak K, Bajer K (2020) Novel starch/chitosan/Aloe vera composites as promising bio packaging materials. J Polym Environ 28:1021–1039

    Article  CAS  Google Scholar 

  75. Razali RM, Ganeson K, Mubarak A (2017) Preparation and characterization of edible Aloe vera films incorporated with cinnamon oil for fruits and vegetables coating. Malays Appl Biol 46(4):183–190

    Google Scholar 

  76. Amin U, Khan MA, Akram ME, Al-Tawaha ARMS, Laishevtcev A, Shariat MA (2019) Characterization of composite edible films from Aloe vera gel, beeswax and chitosan. Potr S J F Sci 13(1):854–862

    Article  Google Scholar 

  77. Ortega-Toro R, Collazo-Bigliardi S, Rosello J, Santamarina P, Chiralt A (2017) Antifungal starch-based edible films containing Aloe vera. Food Hydrocoll 72:1–17

    Article  CAS  Google Scholar 

  78. Kang HY, Schoenung JM (2005) Electronic waste recycling: a review of US infrastructure and technology options. Resour conserv Recy 45(4):368–400

    Article  Google Scholar 

  79. Kordel W, Dassenakis M, Lintelmann J, Padberg S (1997) The importance of natural organic matrial for environmental processesin waters and soils. Pure Appl Chem 69:1571–1600

    Article  CAS  Google Scholar 

  80. Tondelier D, Lmimouni K, Vuillaume D, Fery C, Haas G (2004) Metal/organic/metal bistable memory devices. Appl Phys Lett 85:5763–5765

    Article  CAS  Google Scholar 

  81. Nelson SO (2005) Dielectric spectroscopy of fresh fruits and vegetables. Proc. IEEE Conf. on ‘Instrumentation and Measurement Technology’, Ottawa, ON, Canada, May 2005, pp 360–364

  82. Chang J, Wang C, Huang C, Tsai T, Guo T, Wen T (2011) Chicken albumen dielectrics in organic field-effect transistors. Adv Mater 23:4077–4081

    Article  CAS  PubMed  Google Scholar 

  83. Khor LQ, Cheong KY (2013a) Aloe vera gel as natural organic dielectric in electronic application. J Mater Sci 24:2646–2652

    CAS  Google Scholar 

  84. Miranda M, Vegagalvez A, Garcıa P, Di Scala K, Shi J, Xue S, Uribe E (2010) Effect of temperature on structural properties of Aloe vera (Aloe barbadensis Miller) gel and weibull distribution for modelling drying process. Food Bio prod Proc 88:138–144

    Article  CAS  Google Scholar 

  85. Lim WF, Quah HJ, Sreenivasan S, Cheong KY (2015) Investigation of Aloe vera as active layer for development of organic based memory devices. Mater Technol 30:29–35

    Article  CAS  Google Scholar 

  86. Rana SM, Amin RA, Anzan M, Talukder SH, Mia MNH, Tayyaba S, Hoq M (2015) Application of Aloe vera gel instead of silicon dioxide as organic dielectric material in microelectronics. Mater Sci-Poland 33(3):635–638

    Article  CAS  Google Scholar 

  87. Khor LQ, Cheong KY (2013b) N-type organic field-effect transistor based on fullerene with natural Aloe vera/SiO2 nanoparticles as gate dielectric. ECS J Solid State Sci Technol 2(11):P440–P444

    Article  CAS  Google Scholar 

  88. Yang G, Pang G, Pang Z, Gu Y, Mäntysalo M, Yang H (2018) Non-invasive flexible and stretchablewearable sensors with nano-based enhancement for chronic disease care. IEEE Rev Biomed Eng. https://doi.org/10.1109/RBME.2018.2887301

    Article  PubMed  Google Scholar 

  89. Bonfiglio A, De Rossi D, Kirstein T, Locher IR, Mameli F, Paradiso R, Vozzi G (2005) Organic field-effect transistor for textile applications. IEEE Trans Inf Technol Biomed 9(3):319–324

    Article  PubMed  Google Scholar 

  90. Lee JB, Subramanian V (2005) Weave patterned organic transistors on fiber for E-textiles. IEEE Trans Electron Dev 52(2):269–275

    Article  CAS  Google Scholar 

  91. Maccioni M, Orgiu E, Cosseddu P, Locci S, Bonfiglio A (2006) Towards the textile transistor: assembly and characterization of an organic field effect transistor with a cylindrical geometry. Appl Phys Lett 89(14):1–3

    Article  CAS  Google Scholar 

  92. Hamedi M, Forchheimer R, Inganäs O (2007) Towards woven logic from organic electronic fibres. Nat Mater 6(5):357–362

    Article  CAS  PubMed  Google Scholar 

  93. Hamedi M, Herlogsson L, Crispin X, Marcilla R, Berggren M, Inganäs O (2009) Fiber-embedded electrolyte-gate field-effect transistors for e-textiles. Adv Mater 21(5):573–577

    Article  CAS  PubMed  Google Scholar 

  94. De Rossi D (2007) A logical step. Nat Mater 6:628–629

    Article  CAS  Google Scholar 

  95. Ajoy SK (2004) An evaluation of UV protection imparted by cotton fabrics dyed with natural colorants. BMC Dermatol 4(15):1–8

    Google Scholar 

  96. Strid A, Porra RJ (1992) Alteration in pigment content in leaves of pisumsativum after exposure to supplementary UV-B. Plant Cell Physiol 33:1015–1023

    CAS  Google Scholar 

  97. Landry LG, Chapple CCS, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 109(1):159–1166

    Google Scholar 

  98. Singh N (2018) Substantiate the effects of reactive dyes and Aloe vera on the ultra violet protective properties on cotton woven and knitted fabrics. Int J Mater Textile Eng 12:1

    Google Scholar 

  99. Milatovic D, Zaja-Milatovic S, Gupta RC (2016) Oxidative stress and excitotoxicity: antioxidants from nutraceuticals. Efficacy Saf Toxicity Nutrac 29:401–403

    Google Scholar 

  100. Halliwell B, Gutteridge JMC, Cross CE (1992) Free radicals, antioxidants, and human disease: where are we now? Transl Res 119(6):598–620

    CAS  Google Scholar 

  101. Ray A, Gupta DS, Ghosh S (2013) Evaluation of anti-oxidative activity and UV absorption potential of the extracts of Aloe vera L. gel from different growth periods of plants. Ind Crops Prod 49:712–719

    Article  CAS  Google Scholar 

  102. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure antioxidant activity relationship of flavonoids and phenolic acid. Free Radic Biol Med 20:933–995

    Article  CAS  PubMed  Google Scholar 

  103. Fernandez-Garcia N, de la Garma JG, Olmos E (2009) ROS as biomarkers in hyperhydricity. In: Duttagupta S (ed) Reactive oxygen species and antioxidants in higher plants. Taylor and Francis, New York, pp 249–274

    Google Scholar 

  104. Sultana B, Anwar F, Ashraf M (2009) Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 14:2167–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Anilkumar KR, Sudarshankrishna KR, Chandramohan G, Ilaiyaraja N, Khanum F, Bawa AS (2010) Effect of Aloe vera gel extract on antioxidant enzymes and azoxymethane induced oxidative stress in rats. Indian J Exp Biol 48:837–842

    Google Scholar 

  106. Ozsoy N, Canadoken E, Akev N (2009) Implications fordegenerative disorders. Oxidative Med Cell Longev 2:99–106

    Article  Google Scholar 

  107. Bramley PM, Elmadfa I, Kafatos A, Kelly FJ, Manios Y, Roxborough HE, Schuch W, Sheehy PJA, Wagner KH (2000) Vitamin E. J Sci Food Agric 80(7):913–938

    Article  CAS  Google Scholar 

  108. Son K, Yoo DI, Shin Y (2014) Fixation of vitamin E microcapsules on dyed cotton fabrics. Chem Eng J 239:284–289

    Article  CAS  Google Scholar 

  109. Abla MJ, Banga AK (2014) Formulation of tocopherol nanocarriers and in vitro delivery into human skin. Int J Cosmet Sci 36(3):239–246

    Article  CAS  PubMed  Google Scholar 

  110. Hategekimana J, Masamba KG, Ma J, Zhong F (2015) Encapsulation of vitamin E: effect of physicochemical properties of wall material on retention and stability. Carbohydr Polym 124:172–179

    Article  CAS  PubMed  Google Scholar 

  111. Zigoneanu IG, Astete CE, Sabliov CM (2008) Nanoparticles with entrapped α-tocopherol: synthesis, characterization, and controlled release. Nanotechnology 19(10):1–8

    Article  CAS  Google Scholar 

  112. Ganesan P, Selvi C, Ramachandran T (2012) Microencapsulation of copper enriched herbals for curative garments. Indian J Tradit Know 11(3):532–536

    Google Scholar 

  113. Jothi D (2015) Application of enzyme extracted from Aloe vera plant in chemical pretreatment of cotton knitted textile to reduce pollution load. World J Eng Technol 3:37–44

    Article  Google Scholar 

  114. Sheikh J, Bramhecha I (2018) Enzymes for green chemical processing of cotton. In: Islam S, Butola B (eds) The impact and prospects of green chemistry for textile technology. Elsevier, Amsterdam, pp 135–160

    Google Scholar 

  115. Srivastava A, Singh TG (2011) Utilization of Aloe vera for dyeing natural fabrics. Asian J Home Sci 6:1–4

    Google Scholar 

  116. Islam MT, Hossain SK, Hasan MM (2016) Aloe vera gel: a new thickening agent for pigment printing. Color Technol 132:255–264

    Article  CAS  Google Scholar 

  117. Prodhan S, Fatima N, Sharma E (2015) Printing of cotton fabric with reactive dye using Aloe vera gel of printing thickener. I J Appl Res 1(9):1027–1032

    Google Scholar 

  118. Sonwalkar TN (1993) Handbook of silk technology. Wiley Eastern Limited, New Delhi, pp 170–173

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Ibrahim H. Mondal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, M.I.H., Saha, J. & Rahman, M.A. Functional Applications of Aloe vera on Textiles: A Review. J Polym Environ 29, 993–1009 (2021). https://doi.org/10.1007/s10924-020-01931-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01931-4

Keywords

Navigation