Skip to main content
Log in

Influence of Fibre Inter-ply Orientation on the Mechanical and Free Vibration Properties of Banana Fibre Reinforced Polyester Composite Laminates

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The mechanical properties and vibration damping characteristics of cross-ply laminates ([90°/0°/90°] and [0°/90°/0°]), [0°/45°/0°], four-layered angle ply laminate ([90°/0°]s) and Quasi-isotropic laminates ([0°/90°/45°]s, [0°/45°/90°]s,) containing 50 ± 2 wt% of banana fibres in polyester matrix were investigated. The experimental results indicate that the tensile strength, Young’s modulus, impact strength, and the natural frequency were superior for [0°/90°/0°] laminates. In the case of flexural properties, the Quasi-isotropic laminates displayed better performance than the other configurations. Tensile fractured specimens were examined under a scanning electron microscope (SEM) to understand the difference in failure behavior due to the inter-ply orientation in the laminate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

taken from the recently published open access work of author [25])

Similar content being viewed by others

References

  1. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364. https://doi.org/10.1016/j.carbpol.2007.05.040

    Article  CAS  Google Scholar 

  2. Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86:1–18. https://doi.org/10.1016/j.carbpol.2011.04.043

    Article  CAS  Google Scholar 

  3. Kumar TSM, Rajini N, Reddy KO et al (2018) All-cellulose composite films with cellulose matrix and Napier grass cellulose fibril fillers. Int J Biol Macromol 112:1310–1315

    Article  CAS  Google Scholar 

  4. Thiagamani SMK, Krishnasamy S, Siengchin S (2019) Challenges of biodegradable polymers: an environmental perspective. Appl Sci Eng Prog. https://doi.org/10.14416/j.asep.2019.03.002

    Article  Google Scholar 

  5. Chandrasekar M, Shahroze RM, Ishak MR et al (2019) Flax and sugar palm reinforced epoxy composites: effect of hybridization on physical, mechanical, morphological and dynamic mechanical properties. Mater Res Express 6(10):105331

    Article  CAS  Google Scholar 

  6. Thiagamani SMK, Krishnasamy S, Muthukumar C et al (2019) Investigation into mechanical, absorption and swelling behaviour of hemp/sisal fibre reinforced bioepoxy hybrid composites: effects of stacking sequences. Int J Biol Macromol 140:637–646

    Article  CAS  Google Scholar 

  7. Senthilkumar K, Saba N, Chandrasekar M et al (2019) Evaluation of mechanical and free vibration properties of the pineapple leaf fibre reinforced polyester composites. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2018.11.081

    Article  Google Scholar 

  8. Laranjeira E, De Carvalho LH, Silva SMDL, D’Almeida JRM (2006) Influence of fiber orientation on the mechanical properties of polyester/jute composites. J Reinf Plast Compos 25:1269–1278. https://doi.org/10.1177/0731684406060577

    Article  CAS  Google Scholar 

  9. Ben BS, Ben CR (2007) Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Compos Sci Technol 67:140–147

    Article  CAS  Google Scholar 

  10. Jacob M, Thomas S, Varughese KT (2004) Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos Sci Technol 64:955–965

    Article  CAS  Google Scholar 

  11. Nurazzi NM, Khalina A, Chandrasekar M et al (2020) Effect of fiber orientation and fiber loading on the mechanical and thermal properties of sugar palm yarn fiber reinforced unsaturated polyester resin composites. Polimery 65:115–124. https://doi.org/10.14314/polimery.2020.2.5

    Article  CAS  Google Scholar 

  12. Hossain MR, Islam MA, Van Vuurea A, Verpoest I (2013) Tensile behavior of environment friendly jute epoxy laminated composite. Procedia Eng 56:782–788. https://doi.org/10.1016/j.proeng.2013.03.196

    Article  CAS  Google Scholar 

  13. Treviso A, Van Genechten B, Mundo D, Tournour M (2015) Damping in composite materials: properties and models. Compos B 78:144–152. https://doi.org/10.1016/j.compositesb.2015.03.081

    Article  CAS  Google Scholar 

  14. Gibson RF (2000) Modal vibration response measurements for characterization of composite materials and structures. Compos Sci Technol 60:2769–2780. https://doi.org/10.1016/S0266-3538(00)00092-0

    Article  Google Scholar 

  15. Ashworth S, Rongong J, Wilson P, Meredith J (2016) Mechanical and damping properties of resin transfer moulded jute-carbon hybrid composites. Compos B 105:60–66

    Article  CAS  Google Scholar 

  16. Wang K, Okuno K, Banu M, Epureanu BI (2017) Vibration-based identification of interphase properties in long fiber reinforced composites. Compos Struct 174:244–251

    Article  Google Scholar 

  17. Flynn J, Amiri A, Ulven C (2016) Hybridized carbon and flax fiber composites for tailored performance. Mater Des 102:21–29

    Article  CAS  Google Scholar 

  18. Rueppel M, Rion J, Dransfeld C et al (2017) Damping of carbon fibre and flax fibre angle-ply composite laminates. Compos Sci Technol 146:1–9

    Article  CAS  Google Scholar 

  19. Zhang J, Khatibi AA, Castanet E et al (2019) Effect of natural fibre reinforcement on the sound and vibration damping properties of bio-composites compression moulded by nonwoven mats. Compos Commun 13:12–17. https://doi.org/10.1016/j.coco.2019.02.002

    Article  Google Scholar 

  20. Duc F, Bourban PE, Månson JAE (2014) The role of twist and crimp on the vibration behaviour of flax fibre composites. Compos Sci Technol 102:94–99. https://doi.org/10.1016/j.compscitech.2014.07.004

    Article  CAS  Google Scholar 

  21. Chandra R, Singh SP, Gupta K (1999) Damping studies in fiber-reinforced composites–a review. Compos Struct 46:41–51

    Article  Google Scholar 

  22. Akoussan K, Boudaoud H, Koutsawa Y, Carrera E (2016) Sensitivity analysis of the damping properties of viscoelastic composite structures according to the layers thicknesses. Compos Struct 149:11–25

    Article  Google Scholar 

  23. Ni N, Wen Y, He D et al (2015) High damping and high stiffness CFRP composites with aramid non-woven fabric interlayers. Compos Sci Technol 117:92–99

    Article  CAS  Google Scholar 

  24. Alberts TE, Xia H (1995) Design and analysis of fiber enhanced viscoelastic damping polymers. J Vib Acoust 117(4):398–404. https://doi.org/10.1115/1.2874470

  25. Senthilkumar K, Siva I, Sultan MTH et al (2017) Static and dynamic properties of sisal fiber polyester composites—effect of interlaminar fiber orientation. BioResources. https://doi.org/10.15376/biores.12.4.7819-7833

    Article  Google Scholar 

  26. Daoud H, El Mahi A, Rebiere J-L et al (2017) Characterization of the vibrational behaviour of flax fibre reinforced composites with an interleaved natural viscoelastic layer. Appl Acoust 128:23–31

    Article  Google Scholar 

  27. Suarez SA, Gibson RF, Sun CT, Chaturvedi SK (1986) The influence of fiber length and fiber orientation on damping and stiffness of polymer composite materials. Exp Mech 26:175–184. https://doi.org/10.1007/BF02320012

    Article  Google Scholar 

  28. Pothan LA, Thomas S, Neelakantan NR (1997) Short banana fiber reinforced polyester composites: mechanical, failure and aging characteristics. J Reinf Plast Compos 16:744–765. https://doi.org/10.1177/073168449701600806

    Article  CAS  Google Scholar 

  29. Pothan LA, Thomas S, Groeninckx G (2006) The role of fibre/matrix interactions on the dynamic mechanical properties of chemically modified banana fibre/polyester composites. Compos A 37:1260–1269. https://doi.org/10.1016/j.compositesa.2005.09.001

    Article  CAS  Google Scholar 

  30. Muktha K, Gowda BSK (2017) Investigation of water absorption and fire resistance of untreated banana fibre reinforced polyester composites. Mater Today Proc 4:8307–8312

    Article  CAS  Google Scholar 

  31. Kumar KS, Siva I, Rajini N et al (2016) Layering pattern effects on vibrational behavior of coconut sheath/banana fiber hybrid composites. Mater Des 90:795–803

    Article  CAS  Google Scholar 

  32. Sapuan SM, Leenie A, Harimi M, Beng YK (2006) Mechanical properties of woven banana fibre reinforced epoxy composites. Mater Des 27:689–693. https://doi.org/10.1016/j.matdes.2004.12.016

    Article  CAS  Google Scholar 

  33. Mariatti M, Jannah M, Abu Bakar A, Abdul Khalil HPS (2008) Properties of banana and pandanus woven fabric reinforced unsaturated polyester composites. J Compos Mater 42:931–941. https://doi.org/10.1177/0021998308090452

    Article  CAS  Google Scholar 

  34. Zhu WH, Tobias BC, Coutts RSP (1995) Banana fibre strands reinforced polyester composites. J Mater Sci Lett 14:508–510

    Article  CAS  Google Scholar 

  35. Sreekumar PA, Albert P, Unnikrishnan G et al (2008) Mechanical and water sorption studies of ecofriendly banana fiber-reinforced polyester composites fabricated by RTM. J Appl Polym Sci 109:1547–1555

    Article  CAS  Google Scholar 

  36. Amir N, Abidin KAZ, Shiri FBM (2017) Effects of fibre configuration on mechanical properties of banana fibre/PP/MAPP natural fibre reinforced polymer composite. Procedia Eng 184:573–580

    Article  CAS  Google Scholar 

  37. Ranjbar N, Zhang M (2020) Fiber-reinforced geopolymer composites: a review. Cem Concr Compos 107:103498

    Article  CAS  Google Scholar 

  38. Idicula M, Joseph K, Thomas S (2010) Mechanical performance of short banana/sisal hybrid fiber reinforced polyester composites. J Reinf Plast Compos 29:12–29. https://doi.org/10.1177/0731684408095033

    Article  CAS  Google Scholar 

  39. ASTM (2014) Astm D3039/D3039M. Annu B ASTM Stand. https://doi.org/10.1520/D3039

    Article  Google Scholar 

  40. ASTM (2017) D790—Flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM Stand. https://doi.org/10.1520/D0790-17.2

    Article  Google Scholar 

  41. ASTM (1987) Standard test methods for Izod test D256. 10:1–20. https://doi.org/10.1520/D0256-10R18.N

  42. International A (2017) Standard test method for measuring vibration-damping properties of materials E756-9804. 05:1–18. https://doi.org/10.1520/E0756-05R17.2

  43. Kumar KS, Siva I, Jeyaraj P, Winowlin Jappes JT, Amico SC, Rajini N (2014) Synergy of fiber length and content on free vibration and damping behavior of natural fiber reinforced polyester composite beams. Mater Des 56:379–386

    Article  CAS  Google Scholar 

  44. Munde YS, Ingle RB, Siva I (2019) A comprehensive review on the vibration and damping characteristics of vegetable fiber-reinforced composites. J Reinf Plast Compos 38:822–832. https://doi.org/10.1177/0731684419838340

    Article  CAS  Google Scholar 

  45. Senthil Kumar K, Siva I, Rajini N et al (2016) Layering pattern effects on vibrational behavior of coconut sheath/banana fiber hybrid composites. Mater Des 90:795–803. https://doi.org/10.1016/j.matdes.2015.11.051

    Article  CAS  Google Scholar 

  46. Badrinath R, Senthilvelan T (2014) Comparative investigation on mechanical properties of banana and sisal reinforced polymer based composites. Procedia Mater Sci 5:2263–2272. https://doi.org/10.1016/j.mspro.2014.07.444

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Center for Composite Materials, Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamilnadu, India, for their kind permission to prepare and test the composite samples. The King Mongkut University of Technology North Bangkok (KMUTNB), Thailand, has funded this research through Grant No. KMUTNB-64-KNOW-004, hence, the authors are thankful to the authorities of KMUNTB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Siva, K. Senthilkumar, Suchart Siengchin or N. Rajini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrasekar, M., Siva, I., Kumar, T.S.M. et al. Influence of Fibre Inter-ply Orientation on the Mechanical and Free Vibration Properties of Banana Fibre Reinforced Polyester Composite Laminates. J Polym Environ 28, 2789–2800 (2020). https://doi.org/10.1007/s10924-020-01814-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01814-8

Keywords

Navigation