Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Soil Inoculation with Pseudomonas geniculata WS3 for Accelerating the Biodegradation Process of In Situ Compatibilized PBS/PLA Blends Doped with HPQM

Abstract

This work studied the biodegradative activity of Pseudomonas geniculata WS3 and Stenotrophomonas pavanii CH1, PLA-degrading bacteria, on films with different ratios of polybutylene succinate (PBS)/polylactic acid (PLA), in submerged cultures. Effects of PBS, dicumyl peroxide (DCP) and 2-hydroxypropyl-3-piperazinyl quinoline carboxylic acid methacrylate (HPQM) of in situ compatibilized PBS/PLA blends were also examined under soil burial biodegradation at mesophilic and thermophilic conditions. The results from the submerged experiments showed that the weight loss of PBS/PLA blends increased with increasing PBS content. All blending ratios of PBS/PLA were more degraded by P. geniculata WS3 than S. pavanii CH1. After soil burial, PBS/PLA films with 40/60 wt% showed higher biodegradation than those with 20/80 wt% with or without P. geniculata WS3 inoculation. However, the biodegradation of PBS/PLA blends inoculated with P. geniculata WS3 was higher than that of the uninoculated treatment. The addition of DCP in PBS/PLA blends decreased the biodegradation and weight loss. Unexpectedly, the degree of biodegradation and weight loss of PBS/PLA at a ratio of 20/80 wt% with DCP added were higher than that of PBS/PLA at a ratio of 40/60 wt% with DCP added. The addition of HPQM, showing antibacterial properties, decreased the biodegradation of PBS/PLA blends by 1.4 to 1.8-fold compared to those without HPQM addition. It could be concluded that the inoculation of P. geniculata WS3 mainly promoted the biodegradation of PBS/PLA blends under mesophilic condition. However, the addition of DCP and HPQM decreased the biodegradation of the PBS/PLA blends.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    John RP, Nampoothiri KM, Pandey A (2007) Appl Microbiol Biotechnol 74:524

  2. 2.

    Subramanian MR, Talluri S, Christopher LP (2015) Microb Biotechnol 8:221

  3. 3.

    Inkinen S, Hakkarainen M, Albertsson A, Sodergard A (2011) Biomacromolecules 12:523

  4. 4.

    Stoclet G, Seguela R, Lefebvre JM (2011) Polymer 52:1417

  5. 5.

    Fortunati E, Armentano I, Iannoni A, Barbale M, Zaccheo S, Scavone M, Visai L, Kenny JM (2012) J Appl Polym Sci 124:87

  6. 6.

    Harada M, Ohya T, Iida K, Hayashi H, Hirano K, Fukuda H (2007) J Appl Polym Sci 106:1813

  7. 7.

    Risse S, Tighzert L, Berzin F, Vergnes B (2014) J Appl Polym Sci 131:40364

  8. 8.

    Deng Y, Thomas NL (2015) Eur Polym J 71:534

  9. 9.

    Hassan EAM, Elarabi SE, Wei Y, Yu M (2018) Text Res J 88:1735

  10. 10.

    Sivanjineyulu V, Behera K, Chang YH, Chiu FC (2018) Compos Part A Appl Sci Manuf 114:30

  11. 11.

    Chen GX, Kim HS, Kim ES, Yoon JS (2005) Polymer 46:11829

  12. 12.

    Shibata M, Inoue Y, Miyoshi M (2006) Polymer 47:3557

  13. 13.

    Hao Y, Yang H, Pan H, Zhang H, Ran X (2018) Polym-Plast Technol 57:1882

  14. 14.

    Ji D, Liu Z, Lan X, Wu F, Xie B, Yang M (2014) J Appl Polym Sci 131:39580

  15. 15.

    Srimalanon P, Prapagdee B, Markpin T, Sombatsompop N (2018) Polym Test 67:331

  16. 16.

    Sributr A, Yamsaengsung W, Israngkura K, Wimolmala E, Kositchaiyong A, Sombatsompop N (2015) J Plast Film Sheet 31:248

  17. 17.

    Pin-ngern K, Prapagdee B, Kositchaiyong A, Sombatsompop N (2016) Int Biodeterior Biodegrad 109:211

  18. 18.

    Eksirinimitr A, Wimolmala E, Taptim K, Sombatsompop N (2016) Polym Test 55:123

  19. 19.

    Qi X, Ren Y, Wang X (2017) Int Biodeterior Biodegrad 117:215

  20. 20.

    Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R (2016) Adv Drug Deliv Rev 107:333

  21. 21.

    Satti SM, Abbasi AM, Salahuddin QUA, Marsh TL, Auras R, Hasan F, Badshah M, Farman M, Shah AA (2019) Polym Degrad Stab 160:1

  22. 22.

    Matsumura S (2002) Macromol Biosci 2:105

  23. 23.

    Nakajima-Kambe T, Ichihashi F, Matsuzoe R, Kato S, Shintani N (2009) Polym Degrad Stab 94:1901

  24. 24.

    Jeon HJ, Kim MN (2013) Int Biodeterior Biodegrad 85:289

  25. 25.

    Apinya T, Sombatsompop N, Prapagdee B (2015) Int Biodeterior Biodegrad 99:23

  26. 26.

    Penkhrue W, Khanongnuch C, Masaki K, Pathom-aree W, Punyodom W, Lumyong S (2015) World J Microbiol Biotechnol 31:1431

  27. 27.

    Satti SM, Shah AA, Auras R, Marsh TL (2017) Polym Degrad Stab 144:392

  28. 28.

    Youngpreda A, Panyachanakul T, Kitpreechavanich V, Sirisansaneeyakul S, Suksamrarn S, Tokuyama S, Krajangsang S (2017) J Polym Environ 25:1131

  29. 29.

    Panyachanakul T, Sorachart B, Lumyong S, Lorliam W, Kitpreechavanich V, Krajangsang S (2019) Electron J Biotechnol 40:52

  30. 30.

    Shinozaki Y, Morita T, Cao X-H, Yoshida S, Koitabashi M, Watanabe T, Suzuki K, Sameshima-Yamashita Y, Nakajima-Kambe T, Fujii T, Kitamoto HK (2013) Appl Microbiol Biotechnol 97:2951

  31. 31.

    Mao H, Liu H, Gao Z, Su T, Wang Z (2015) Polym Degrad Stab 114:1

  32. 32.

    Jung H-W, Yang M-K, Su R-C (2018) Polym Degrad Stab 154:186

  33. 33.

    Bubpachat T, Sombatsompop N, Prapagdee B (2018) Polym Degrad Stab 152:75

  34. 34.

    Pattanasuttichonlakul W, Sombatsompop N, Prapagdee B (2018) Int Biodeterior Biodegrad 132:74

  35. 35.

    Wang YP, Xiao YJ, Duan J, Yang JH, Wang Y, Zhang CL (2016) Polym Bull 73:1067

  36. 36.

    Hu X, Su T, Li P, Wang Z (2018) Polym Bull 75:533

  37. 37.

    ASTM D5338 (2015) Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions, Incorporating Thermophilic Temperatures

  38. 38.

    ASTM D5988 (2018) Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in Soil

  39. 39.

    Saadi Z, Rasmont A, Cesar G, Bewa H, Benguigui L (2012) J Polym Environ 20:273

  40. 40.

    Castro-Aguirre E, Auras R, Selke S, Rubino M, Marsh T (2017) Polym Degrad Stab 137:251

  41. 41.

    Tokiwa Y, Suzuki T (1981) J Appl Polym Sci 26:441

  42. 42.

    Tokiwa Y, Jarerat A (2004) Biotechnol Lett 26:771

  43. 43.

    Liu L, Yu J, Cheng L, Yang X (2009) Polym Degrad Stab 94:90

  44. 44.

    Karamanlioglu M, Preziosi R, Robson GD (2017) Polym Degrad Stab 137:122

  45. 45.

    Karamanlioglu M, Robson GD (2013) Polym Degrad Stab 98:2063

  46. 46.

    Prapruddivongs C, Sombatsompop N (2017) J Thermoplast Compos Mater 30:583

Download references

Acknowledgements

The authors would like to thank Office of the Higher Education Commission (Thailand) under the National Research University (NRU) program, the Thailand Research Fund (TRF) under a Directed Basic Research Grant (DBG6080004), and the Royal Golden Jubilee PhD Program (PHD/0053/2558). Appreciation is also expressed to Koventure Co., Ltd. (Thailand) for supply of chemicals. Sincere thanks are expressed to T. Bubpachat, W. Pattanasuttichonlakul, and Y. Boonluksiri for their technical assistance.

Author information

Correspondence to Narongrit Sombatsompop.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 395.7 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srimalanon, P., Prapagdee, B. & Sombatsompop, N. Soil Inoculation with Pseudomonas geniculata WS3 for Accelerating the Biodegradation Process of In Situ Compatibilized PBS/PLA Blends Doped with HPQM. J Polym Environ (2020). https://doi.org/10.1007/s10924-020-01670-6

Download citation

Keywords

  • Polylactic acid
  • Polymer blends
  • Biodegradation
  • PLA-degrading bacteria
  • Antibacterial agent