Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Improving the Compatibility and Mechanical Properties of Natural Fibers/Green Polyethylene Biocomposites Produced by Rotational Molding

  • 26 Accesses

Abstract

In this work, sustainable rotomolded composites based on green polyethylene (Green-PE) and natural fibers (coir and agave) were studied. Fibers’ surface was treated with maleated polyethylene to improve the fiber-matrix compatibility. Samples were characterized by morphology, mechanical properties (impact, tension, and flexion) and water absorption. Results showed a more homogeneous morphology with better fiber dispersion and wetting in the treated fibers composites which lead to substantial improvements of tensile modulus from 258 MPa for the neat matrix up to 345 MPa for both, treated agave and coir composites (at 30% wt), and tensile strength from 13.7 MPa for Green-PE to 15.3 MPa for 30% treated coir composites. The positive effect of the surface treatment was also observed in flexural strength with increases up to 100% and 34% in flexural modulus. Also, impact strength was increased up to 46% and water absorption reduced up to 55% for treated fiber composites compared to untreated fiber composites. As an important observation, it was possible to obtain similar or even higher mechanical properties with the Green-PE natural fiber composites than for a petroleum-based rotomolded polyethylene, which is interesting in terms of sustainability and performances for specific applications like automotive and packaging.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    De Oliveira AG, Nazareth da Silva AL, Furtado de Sousa AM, Moreira-Leite MCA, Jandorno JC, Escocio VA (2016) Mater Chem Phys 181:344

  2. 2.

    De Vargas Mores G, Spanhol-Finocchio CP, Barichello R, Avila-Pedrozo E (2018) J Clean Prod 177:12

  3. 3.

    Samper-Madrigal MD, Fenollar O, Dominici F, Balart R, Kenny JM (2015) J Mater Sci 50:863

  4. 4.

    Varghese AM, Mittal V (2018). In: Gopal-Shimpi N (ed) Biodegradable and biocompatible polymer composites. Woodhead Publishing, Cambridge, p 157 Chap. 6

  5. 5.

    Bujjibabu G, Chittaranjan DV, Ramakrishna M, Nagarjun K (2018) Mater Today Proc 5:12249

  6. 6.

    Zhao X, Li RKY, Bai SL (2014) Composite A 65:169

  7. 7.

    Hemmati F, Yousefzade O, Garmabi H (2018) Adv Polym Technol 37:1345

  8. 8.

    Pérez-Fonseca AA, Robledo-Ortíz JR, Moscoso-Sánchez FJ, Fuentes-Talavera FJ, Rodrigue D, González-Núñez R (2015) J Polym Environ 23:136

  9. 9.

    Savas LA, Tayfun U, Dogan M (2016) Composites B 99:188

  10. 10.

    Boronat T, Fombuena V, Garcia-Sanoguera D, Sanchez-Nacher L, Balart R (2015) Mater Des 68:177

  11. 11.

    Tarres Q, Melbo JK, Delgado-Aguilar M, Espinach FX, Mutjé P, Chinga-Carrasco G (2018) Composite B 153:70

  12. 12.

    Nugent P (2017). In: Kuts M (ed) Applied Plastics Engineering Handbook. Elsevier, Delmar, p 321 Chap. 15

  13. 13.

    Ramkumar PL, Ramesh A, Alvenkar PP, Patel N (2015) Mater Today Proc 2:3212

  14. 14.

    López-Bañuelos RH, Moscoso-Sánchez FJ, Ortega-Gudiño P, Mendizabal E, Rodrigue D, González-Núñez R (2012) Polym Eng Sci 52:2489

  15. 15.

    Cisneros-López EO, Pérez-Fonseca AA, Fuentes-Talavera FJ, Anzaldo J, Gonzalez-Nuñez R, Rodrigue D, Robledo-Ortíz JR (2016a) Polym Eng Sci 38:96

  16. 16.

    Cisneros-López EO, González-López ME, Pérez-Fonseca AA, Gonzalez-Nuñez R, Rodrigue D, Robledo-Ortíz JR (2016) Compos Interface 24:35

  17. 17.

    González-López ME, Pérez‐Fonseca AA, Cisneros‐López EO, Manríquez‐González R, Ramírez‐Arreola DE, Rodrigue D, Robledo‐Ortíz JR (2019) J Polym Environ 27:61

  18. 18.

    Hossen F, Hamdan S, Rahman R, Islam S, Liew FK, Hui-Lai JL, Rahman M (2017) Polym Compos 38:1266

  19. 19.

    Pérez-Fonseca AA, Arellano M, Rodrigue D, González-Núñez R, Robledo-Ortiz JR (2016) Polym Compos 37:3015

  20. 20.

    Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276/277:1

  21. 21.

    Sari PS, Sabu T, Petr S, Zoya G, Zdenka J (2019) Composite B 177:1

  22. 22.

    Arrakhiz FZ, ElAchaby M, Kakou AC, Vaudreuil S, Benmoussa K, Bouhfid R, Fassi-Fehri O, Qaiss A (2012) Mater Des 37:379

  23. 23.

    Barbosa V, Ramires EC, Tanaka-Razera IA, Frollini E (2010) Ind Crop Prod 32:305

  24. 24.

    Kuciel S, Jakubowska P, Kuzniar P (2014) Composite B 64:72

  25. 25.

    Ferrero B, Fombuena V, Fenollar O, Boronat T, Balart R (2015) Polym Compos 36:1378

  26. 26.

    Pervaiz M, Oakley P, Sain M (2014) Mater Sci Appl 5:845

  27. 27.

    Carter HG, Kibler KG (1978) J Compos Mater 12:118

Download references

Acknowledgements

One of the authors (M.E. González-López) acknowledges a scholarship from the Mexican National Council for Science and Technology (CONACyT #481448). Also, the technical help of Dr. Martín Flores and Dr. Sergio Oliva of the Materials Science Graduate Programs (University of Guadalajara, CUCEI) was highly appreciated for their assistance in SEM analysis.

Author information

Correspondence to Aida A. Pérez-Fonseca.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Robledo-Ortíz, J.R., González-López, M.E., Rodrigue, D. et al. Improving the Compatibility and Mechanical Properties of Natural Fibers/Green Polyethylene Biocomposites Produced by Rotational Molding. J Polym Environ 28, 1040–1049 (2020). https://doi.org/10.1007/s10924-020-01667-1

Download citation

Keywords

  • Green polyethylene
  • Composite
  • Coir
  • Agave
  • Fiber modification
  • Mechanical properties