Recycling of Quaternary Household Plastic Wastes by Utilizing Poly(Ethylene-co-Methacrylic acid) Copolymer Sodium Ion: Compatibility and Re-processability Assessments

  • Divya Rajasekaran
  • Pradip K. MajiEmail author
Original Paper


The recycling of quaternary plastic wastes irrespective of their chemical nature into a value-added material has been investigated in this paper. Household plastic wastes like polyethylene terephthalate bottles, polyethylene bags, polyvinyl chloride sheets, and polypropylene decorative ribbons were recycled based on their polarity by utilizing poly (ethylene-co-methacrylic acid) copolymer sodium ion. The composition of the blend is varied by altering the level of loading of a two-phase compatibilizer. The composition with 7 wt% loading of compatibilizer showed improved properties than the neat blend. Tensile strength and elongation at break (%) improvement of 117% and 485%, respectively reflected in the composition containing 7 wt% of ionomer as a compatibilizer on comparing with 0 wt% of ionomer, making them ideal composition. The compatibilization and improved mechanical performances were supported by nanometric level phase morphological characteristics. The stability and thermal degradation of the compositions are discussed through thermal analysis. Comparative study on repeated processing up to three cycles and their compatibilization mechanism based on polarity has been reported here.


Recycling Household waste Compatibility Mechanical property Mixed plastic wastes 



The financial support for the fellowship of Ms. Divya R by the Ministry of Human Resource Development, India is gratefully acknowledged.

Supplementary material

10924_2019_1607_MOESM1_ESM.docx (1.8 mb)
Supplementary File 1 (DOCX 1889 kb)


  1. 1.
    Welle F (2011) Resour Conserv Recycl 55:865CrossRefGoogle Scholar
  2. 2.
    Dintcheva NT, Jilov N, La Mantia FP (1997) Polymer Degrad Stab 52:191CrossRefGoogle Scholar
  3. 3.
    Zhao P, Xie J, Gu F, Sharmin N, Hall P, Fu J (2018) Waste Manag 76:46CrossRefGoogle Scholar
  4. 4.
    Lamb JB, Willis BL, Fiorenza EA, Couch CS, Howard R, Rader DN, True JD, Kelly LA, Ahmad A, Jompa J, Harvell CD (2018) Science 359:46CrossRefGoogle Scholar
  5. 5.
    Utracki LA (2002) Polymer blend handbook. Kluwer, DordrechtGoogle Scholar
  6. 6.
    Jassim AK (2017) Procedia Manuf 8:635CrossRefGoogle Scholar
  7. 7.
    Sojobi AO, Nwobodo SE, Aladegboye OJ (2016) Cogent Eng 3:1133480Google Scholar
  8. 8.
    Fraïsse F, Verney V, Commereuc S, Obadal M (2005) Polymer Degrad Stab 90:250CrossRefGoogle Scholar
  9. 9.
    Grigoryeva O, Fainleib A, Stepanenko L, Sergeeva L, Pissis P (2005) Polymer Eng Sci 45:801CrossRefGoogle Scholar
  10. 10.
    Luzuriaga SE, Kovářová J, Fortelný I (2011) Polym Degrad Stab 96:751CrossRefGoogle Scholar
  11. 11.
    Bajracharya RM, Manalo AC, Karunasena W, Lau KT (2014) Mater Des 62:98CrossRefGoogle Scholar
  12. 12.
    Huitric J, Ville J, Mederic P, Aubry T (2018) Polym Test 70:208CrossRefGoogle Scholar
  13. 13.
    Zhang X, Zhang J (2018) J Appl Polym Sci 135:46839CrossRefGoogle Scholar
  14. 14.
    David D, Moreno P, Saron C (2018) Waste Manag Res 36:729CrossRefGoogle Scholar
  15. 15.
    Suresh SS, Mohanty S, Nayak SK (2018) Waste Manag Res 36:495CrossRefGoogle Scholar
  16. 16.
    Taghavi SK, Shahrajabian H, Hosseini HM (2018) J Elastom Plastics 50:13CrossRefGoogle Scholar
  17. 17.
    Rajasekaran D, Maji PK (2018) Waste Manag 74:135CrossRefGoogle Scholar
  18. 18.
    Sawant PD, Sabri YM, Ippolito SJ, Bansal V, Bhargava SK (2009) Phys Chem Chem Phys 11:2374CrossRefGoogle Scholar
  19. 19.
    Stawikowska J, Livingston AG (2013) J Membr Sci 425–426:58CrossRefGoogle Scholar
  20. 20.
    Li H, Sui X, Xie X (2018) Chin J Polym Sci 36:848CrossRefGoogle Scholar
  21. 21.
    Shen C, Zhou Y, Dou R, Wang W, Yin B, Yang M (2015) Polymer 56:395CrossRefGoogle Scholar
  22. 22.
    Vazquez YV, Barbosa SE (2018) J Environ Manag 217:381CrossRefGoogle Scholar
  23. 23.
    Márquez L, Sabino MA, Rivero IA (1998) Polym Bull 41:191CrossRefGoogle Scholar
  24. 24.
    Bertin S, Robin JJ (2002) Eur Polym J 38:2255CrossRefGoogle Scholar
  25. 25.
    Zulkifli NI, Samat N, Anuar H, Zainuddin N (2015) Mater Des 69:114CrossRefGoogle Scholar
  26. 26.
    Mazidi MM, Aghjeh MKR, Hasanpour M (2018) Eng Fract Mech 191:65CrossRefGoogle Scholar
  27. 27.
    Gulmine J, Janissek P, Heise H, Akcelrud L (2002) Polym Test 21:557CrossRefGoogle Scholar
  28. 28.
    ASTM D 5594-98 (Reapproved 2004) Standard test method for determination of the vinyl acetate content of ethylene—vinyl acetate (VA) coplymers by Fourier transform infrared spectroscopy (FT-IR). ASTM International, West ConshohockenGoogle Scholar
  29. 29.
    Krimm S, Folt VL, Shipman JJ, Berens AR (1963) J Polym Sci Part A 1:2621Google Scholar
  30. 30.
    Andanson JM, Kazarian SG (2008) Macromol Symp 265:195CrossRefGoogle Scholar
  31. 31.
    Vijayakumar S, Rajakumar PR (2013) Int Lett Chem Phys Astron 4:58CrossRefGoogle Scholar
  32. 32.
    Li D, Song S, Li C, Cao C, Sun S, Zhang H (2015) J Polym Res 22:102CrossRefGoogle Scholar
  33. 33.
    Song Z, Huang X, Lu X, Lv Q, Xu N, Pang S, Pan L, Li T (2018) J Appl Polym Sci 135:46536CrossRefGoogle Scholar
  34. 34.
    Balakrishnan S, Neelakantan N, Saheb DN, Jog JP (1998) Polymer 39:5765CrossRefGoogle Scholar
  35. 35.
    Imai T, Hamm S, Rothenbacher KP (2003) Environ Sci Technol 37:652CrossRefGoogle Scholar
  36. 36.
    Kuram E, Ozcelik B, Yilmaz F, Timur G, Sahin ZM (2014) Polym Compos 35:2074CrossRefGoogle Scholar
  37. 37.
    Camacho W, Karlsson S (2002) Polym Degrad Stab 78:385CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Polymer and Process EngineeringIndian Institute of Technology RoorkeeSaharanpurIndia

Personalised recommendations