Advertisement

Enhancing the Thermal, Mechanical and Swelling Properties of PVA/Starch Nanocomposite Membranes Incorporating g-C3N4

  • 84 Accesses

Abstract

A ground-breaking and soft nanomaterial, namely graphitic carbon nitride (g-C3N4) has gained importance as two-dimensional filler in polymeric membranes. In this research, g-C3N4 was synthesized by “thermal oxidation etching process”, employing melamine as a precursor. The porous nanosheets were characterized by SEM, XRD and FTIR. g-C3N4 nanosheets showed remarkable thermal stability up to 620 °C. The PVA starch nanocomposite membranes were fabricated with varying amounts of g-C3N4. Owing to strong interactions between g-C3N4, and polymers, the composite membranes showed exceptional thermal and mechanical stability and resist to degrade in various mediums including water, saline and blood. The hybrid membranes showed remarkable swelling abilities up to 96 h. Moreover, g-C3N4 enhanced the hydrophilicity, consequently, moisture retention capability and water vapor transmission were improved. XRD and SEM results revealed the proper dispersion of g-C3N4 into the polymeric matrix. The results suggested that prepared hybrid PVA/St/g-C3N4 membranes could be used as wound dressings.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Mulder J (2012) Basic principles of membrane technology. Springer, New York

  2. 2.

    Waheed H, Hussain A (2019) Fabrication of cellulose acetate/polyaziridine blended flat sheet membranes for dialysis application. BioNanoScience 9:1–10

  3. 3.

    Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47(7):2217–2262

  4. 4.

    Dalane K, Dai Z, Mogseth G, Hillestad M, Deng L (2017) Potential applications of membrane separation for subsea natural gas processing: a review. J Nat Gas Sci Eng 39:101–117

  5. 5.

    George G, Bhoria N, AlHallaq S, Abdala A, Mittal V (2016) Polymer membranes for acid gas removal from natural gas. Sep Purif Technol 158:333–356

  6. 6.

    Baker RW (2000) Membrane technology and applications. Wiley, Hoboken

  7. 7.

    Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33

  8. 8.

    Sajitha C, Mohan D (2005) Studies on cellulose acetate-carboxylated polysulfone blend ultrafiltration membranes. III. J Appl Polym Sci 97(3):976–988

  9. 9.

    Favvas EP, Heliopoulos NS, Karousos DS, Devlin E, Papageorgiou SK, Petridis D, Karanikolos GN (2019) Mixed matrix polymeric and carbon hollow fiber membranes with magnetic iron-based nanoparticles and their application in gas mixture separation. Mater Chem Phys 223:220–229

  10. 10.

    Figoli A, Marino T, Galiano F, Blasi E, Belsito E, Liguori A, Leggio A, Rombolà L, Morrone L (2018) Potentiality of polymeric membranes in aromatherapy: application to bergamot essential oil. Sep Purif Technol 207:166–178

  11. 11.

    Lee E-J, Deka BJ, An AK (2019) Reinforced superhydrophobic membrane coated with aerogel-assisted polymeric microspheres for membrane distillation. J Membr Sci 573:570–578

  12. 12.

    Kalita S, Kandimalla R, Devi B, Kalita B, Kalita K, Deka M, Kataki AC, Sharma A, Kotoky J (2017) Dual delivery of chloramphenicol and essential oil by poly-ε-caprolactone–Pluronic nanocapsules to treat MRSA-Candida co-infected chronic burn wounds. RSC Adv. 7(3):1749–1758

  13. 13.

    Ghalamchi L, Aber S, Vatanpour V, Kian M (2019) A novel antibacterial mixed matrixed PES membrane fabricated from embedding aminated Ag3PO4/g-C3N4 nanocomposite for use in the membrane bioreactor. J Ind Eng Chem 70:412–426

  14. 14.

    Garni M, Wehr R, Avsar SY, John C, Palivan C, Meier W (2018) Polymer membranes as templates for bio-applications ranging from artificial cells to active surfaces. Eur Polym J 112:346–364

  15. 15.

    Cheang B, Zydney AL (2004) A two-stage ultrafiltration process for fractionation of whey protein isolate. J Membr Sci 231(1–2):159–167

  16. 16.

    Bhattacharjee S, Bhattacharjee C, Datta S (2006) Studies on the fractionation of β-lactoglobulin from casein whey using ultrafiltration and ion-exchange membrane chromatography. J Membr Sci 275(1–2):141–150

  17. 17.

    Lee SY, Kim HJ, Patel R, Im SJ, Kim JH, Min BR (2007) Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties. Polym Adv Technol 18(7):562–568

  18. 18.

    Aroca AS, Ribelles JG, Pradas MM, Garayo AV, Antón JS (2007) Characterisation of macroporous poly (methyl methacrylate) coated with plasma-polymerised poly (2-hydroxyethyl acrylate). Eur Polymer J 43(10):4552–4564

  19. 19.

    Archana D, Singh BK, Dutta J, Dutta P (2015) Chitosan-PVP-nano silver oxide wound dressing: in vitro and in vivo evaluation. Int J Biol Macromol 73:49–57

  20. 20.

    Tomić SL, Mićić MM, Dobić SN, Filipović JM, Suljovrujić EH (2010) Smart poly (2-hydroxyethyl methacrylate/itaconic acid) hydrogels for biomedical application. Radiat Phys Chem 79(5):643–649

  21. 21.

    Han J, Lei T, Wu Q (2013) Facile preparation of mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: physical, viscoelastic and mechanical properties. Cellulose 20(6):2947–2958

  22. 22.

    Khorasani MT, Joorabloo A, Moghaddam A, Shamsi H, MansooriMoghadam Z (2018) Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application. Int J Biol Macromol 114:1203–1215

  23. 23.

    Kenawy E-R, Kamoun EA, Eldin MSM, El-Meligy MA (2014) Physically crosslinked poly (vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: synthesis and characterization for biomedical applications. Arab J Chem 7(3):372–380

  24. 24.

    Hyon S-H, Cha W-I, Ikada Y, Kita M, Ogura Y, Honda Y (1994) Poly (vinyl alcohol) hydrogels as soft contact lens material. J Biomater Sci Polym Ed 5(5):397–406

  25. 25.

    Li JK, Wang N, Wu XS (1998) Poly (vinyl alcohol) nanoparticles prepared by freezing–thawing process for protein/peptide drug delivery. J Control Release 56(1–3):117–126

  26. 26.

    Khoerunnisa F, Hendrawan, Sonjaya Y, Putri OD (2016) Superabsorbent hydrogel composite based on copolymer cellulose/poly (vinyl alcohol)/CNT. In: AIP Conference Proceedings, vol 1. AIP Publishing, p 020046

  27. 27.

    Chen DH, Leu JC, Huang TC (1994) Transport and hydrolysis of urea in a reactor–separator combining an anion-exchange membrane and immobilized urease. J Chem Technol Biotechnol 61(4):351–357

  28. 28.

    Torstensen JØ, Helberg RM, Deng L, Gregersen ØW, Syverud K (2019) PVA/nanocellulose nanocomposite membranes for CO2 separation from flue gas. Int J Greenhouse Gas Control 81:93–102

  29. 29.

    Arain MF, Wang M, Chen J, Zhang H (2019) Study on PVA fiber surface modification for strain-hardening cementitious composites (PVA-SHCC). Constr Build Mater 197:107–116

  30. 30.

    Sarwar MS, Niazi MBK, Jahan Z, Ahmad T, Hussain A (2018) Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohyd Polym 184:453–464

  31. 31.

    Kim DS, Park HB, Rhim JW, Lee YM (2004) Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. J Membr Sci 240(1–2):37–48

  32. 32.

    Kamoun EA, Kenawy E-RS, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8(3):217–233

  33. 33.

    Zou G-X, Jin P-Q, Xin L-Z (2008) Extruded starch/PVA composites: water resistance, thermal properties, and morphology. J Elastomers Plast 40(4):303–316

  34. 34.

    Singh B, Sharma S, Dhiman A (2013) Design of antibiotic containing hydrogel wound dressings: biomedical properties and histological study of wound healing. Int J Pharm 457(1):82–91

  35. 35.

    Tian H, Yan J, Rajulu AV, Xiang A, Luo X (2017) Fabrication and properties of polyvinyl alcohol/starch blend films: effect of composition and humidity. Int J Biol Macromol 96:518–523

  36. 36.

    Ramaraj B (2007) Crosslinked poly (vinyl alcohol) and starch composite films. II. Physicomechanical, thermal properties and swelling studies. J Appl Polym Sci 103(2):909–916

  37. 37.

    Zhai M, Yoshii F, Kume T, Hashim K (2002) Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohyd Polym 50(3):295–303

  38. 38.

    Tanpichai S, Oksman K (2016) Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: mechanical properties and creep recovery. Composites A 88:226–233

  39. 39.

    Park S-N, Park J-C, Kim HO, Song MJ, Suh H (2002) Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linking. Biomaterials 23(4):1205–1212

  40. 40.

    Chen J, Li Y, Zhang Y, Zhu Y (2015) Preparation and characterization of graphene oxide reinforced PVA film with boric acid as crosslinker. J Appl Polym Sci. https://doi.org/10.1002/app.42000

  41. 41.

    Hasanah A, Muhtadi A, Elyani I, Musfiroh I (2015) Epichlorohydrin as crosslinking agent for synthesis of carboxymethyl cellulose sodium (Na-CMC) as pharmaceutical excipient from water hyacinth (Eichorrnia crassipes L.). Int J Chem Sci 13(3):1227–1237

  42. 42.

    Bigi A, Cojazzi G, Panzavolta S, Roveri N, Rubini K (2002) Stabilization of gelatin films by crosslinking with genipin. Biomaterials 23(24):4827–4832

  43. 43.

    Destaye AG, Lin C-K, Lee C-K (2013) Glutaraldehyde vapor cross-linked nanofibrous PVA mat with in situ formed silver nanoparticles. ACS Appl Mater Interfaces 5(11):4745–4752

  44. 44.

    Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47(3):254–263

  45. 45.

    Sejidov FT, Mansoori Y, Goodarzi N (2005) Esterification reaction using solid heterogeneous acid catalysts under solvent-less condition. J Mol Catal A 240(1–2):186–190

  46. 46.

    Kaur K, Jindal R, Maiti M, Mahajan S (2019) Studies on the properties and biodegradability of PVA/Trapa natans starch (N-st) composite films and PVA/N-st-g-poly (EMA) composite films. Int J Biol Macromol 123:826–836

  47. 47.

    Labbez C, Fievet P, Szymczyk A, Vidonne A, Foissy A, Pagetti J (2002) Analysis of the salt retention of a titania membrane using the “DSPM” model: effect of pH, salt concentration and nature. J Membr Sci 208(1–2):315–329

  48. 48.

    Wang J, Li M, Zhou S, Xue A, Zhang Y, Zhao Y, Zhong J, Zhang Q (2017) Graphitic carbon nitride nanosheets embedded in poly (vinyl alcohol) nanocomposite membranes for ethanol dehydration via pervaporation. Sep Purif Technol 188:24–37

  49. 49.

    Moermans B, De Beuckelaer W, Vankelecom IF, Ravishankar R, Martens JA, Jacobs PA (2000) Incorporation of nano-sized zeolites in membranes. Chem Commun 24:2467–2468

  50. 50.

    Zhao C, Jiang Z, Zhao J, Cao K, Zhang Q, Pan F (2014) High pervaporation dehydration performance of the composite membrane with an ultrathin alginate/poly (acrylic acid)–Fe3O4 active layer. Ind Eng Chem Res 53(4):1606–1616

  51. 51.

    Guo R, Ma X, Hu C, Jiang Z (2007) Novel PVA–silica nanocomposite membrane for pervaporative dehydration of ethylene glycol aqueous solution. Polymer 48(10):2939–2945

  52. 52.

    Feng C, Khulbe K, Matsuura T, Tabe S, Ismail A (2013) Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Sep Purif Technol 102:118–135

  53. 53.

    Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y (2012) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135(1):18–21

  54. 54.

    Hassan A, Niazi MBK, Hussain A, Farrukh S, Ahmad T (2018) Development of anti-bacterial pva/starch based hydrogel membrane for wound dressing. J Polym Environ 26(1):235–243

  55. 55.

    Reis EFd, Campos FS, Lage AP, Leite RC, Heneine LG, Vasconcelos WL, Lobato ZIP, Mansur HS (2006) Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Mater Res 9(2):185–191

  56. 56.

    Hou T, Guo K, Wang Z, Zhang X-F, Feng Y, He M, Yao J (2019) Glutaraldehyde and polyvinyl alcohol crosslinked cellulose membranes for efficient methyl orange and Congo red removal. Cellulose 26(8):5065–5074

  57. 57.

    He S, Wang J, Yu M, Xue Y, Hu J, Lin J (2019) Structure and mechanical performance of poly (vinyl alcohol) nanocomposite by incorporating graphitic carbon nitride nanosheets. Polymers 11(4):610

  58. 58.

    Kamoun EA, Youssef ME, Abu-Saied M, Fahmy A, Khalil HF, Abdelhai F (2015) Ion conducting nanocomposite membranes based on PVA-HA-HAP for fuel cell application: II. Effect of modifier agent of PVA on membrane properties. Int J Electrochem Sci 10:6627–6644

  59. 59.

    Ramachandran VS, Beaudoin JJ (2000) Handbook of analytical techniques in concrete science and technology: principles, techniques and applications. Elsevier, Amsterdam

  60. 60.

    Kamoun EA, Kenawy E-RS, Tamer TM, El-Meligy MA, Eldin MSM (2015) Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arab J Chem 8(1):38–47

  61. 61.

    Roy N, Saha N, Kitano T, Vitkova E, Saha P (2011) Effectiveness of polymer sheet layer to protect hydrogel dressings. In: Trends in Colloid and Interface Science XXIV. Springer, pp 127–130

  62. 62.

    Thangavel P, Ramachandran B, Kannan R, Muthuvijayan V (2017) Biomimetic hydrogel loaded with silk and l-proline for tissue engineering and wound healing applications. J Biomed Mater Res B 105(6):1401–1408

  63. 63.

    Yang J, Shi G, Bei J, Wang S, Cao Y, Shang Q, Yang G, Wang W (2002) Fabrication and surface modification of macroporous poly (L-lactic acid) and poly (L-lactic-co-glycolic acid)(70/30) cell scaffolds for human skin fibroblast cell culture. J Biomed Mater Res 62(3):438–446

  64. 64.

    Winkler LW (1888) The determination of dissolved oxygen in water. Berlin DeutChem Gas 21:2843–2855

  65. 65.

    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76

  66. 66.

    Cao K, Jiang Z, Zhang X, Zhang Y, Zhao J, Xing R, Yang S, Gao C, Pan F (2015) Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. J Membr Sci 490:72–83

  67. 67.

    Wang J, Li M, Zhou S, Xue A, Zhang Y, Zhao Y, Zhong J (2018) Controllable construction of polymer/inorganic interface for poly (vinyl alcohol)/graphitic carbon nitride hybrid pervaporation membranes. Chem Eng Sci 181:237–250

  68. 68.

    Niu P, Zhang L, Liu G, Cheng HM (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22(22):4763–4770

  69. 69.

    Lotsch BV, Döblinger M, Sehnert J, Seyfarth L, Senker J, Oeckler O, Schnick W (2007) Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations—structural characterization of a carbon nitride polymer. Chemistry 13(17):4969–4980

  70. 70.

    Alghezawi N, Şanlı O, Aras L, Asman G (2005) Separation of acetic acid–water mixtures through acrylonitrile grafted poly (vinyl alcohol) membranes by pervaporation. Chem Eng Process 44(1):51–58

  71. 71.

    Baghaie S, Khorasani MT, Zarrabi A, Moshtaghian J (2017) Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano Zinc oxide as antibacterial wound dressing material. J Biomater Sci Polym Ed 28(18):2220–2241

  72. 72.

    Luo X, Li J, Lin X (2012) Effect of gelatinization and additives on morphology and thermal behavior of corn starch/PVA blend films. Carbohyd Polym 90(4):1595–1600

  73. 73.

    Li Y, He G, Wang S, Yu S, Pan F, Wu H, Jiang Z (2013) Recent advances in the fabrication of advanced composite membranes. J Mater Chem A 1(35):10058–10077

  74. 74.

    Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites. Macromolecules 43(5):2357–2363

  75. 75.

    Li J, Shao L, Yuan L, Wang Y (2014) A novel strategy for making poly (vinyl alcohol)/reduced graphite oxide nanocomposites by solvothermal reduction. Mater Des 1980–2015(54):520–525

  76. 76.

    Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, Liu Y (2011) High strength graphene oxide/polyvinyl alcohol composite hydrogels. J Mater Chem 21(28):10399–10406

  77. 77.

    Fan L, Yang H, Yang J, Peng M, Hu J (2016) Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohyd Polym 146:427–434

  78. 78.

    Yokoyama F, Masada I, Shimamura K, Ikawa T, Monobe K (1986) Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid Polym Sci 264(7):595–601

  79. 79.

    Wang M, Li J, Li W, Du Z, Qin S (2018) Preparation and characterization of novel poly (vinyl alcohol)/collagen double-network hydrogels. Int J Biol Macromol 118:41–48

  80. 80.

    Pal K, Banthia A, Majumdar D (2006) Preparation of transparent starch based hydrogel membrane with potential application as wound dressing. Trends Biomater Artif Organs 20(1):59–67

  81. 81.

    Jaiswal M, Dinda AK, Gupta A, Koul V (2010) Polycaprolactone diacrylate crosslinked biodegradable semi-interpenetrating networks of polyacrylamide and gelatin for controlled drug delivery. Biomed Mater 5(6):065014

  82. 82.

    Winter GD (1962) Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 193(4812):293

  83. 83.

    Huang Y, Wang P, Wang Z, Rao Y, Cao J-j, Pu S, Ho W, Lee SC (2019) Protonated g-C3N4/Ti3+ self-doped TiO2 nanocomposite films: Room-temperature preparation, hydrophilicity, and application for photocatalytic NOx removal. Appl Catal B 240:122–131

  84. 84.

    Parra D, Tadini C, Ponce P, Lugão A (2004) Mechanical properties and water vapor transmission in some blends of cassava starch edible films. Carbohyd Polym 58(4):475–481

  85. 85.

    Vrana N, O'Grady A, Kay E, Cahill P, McGuinness G (2009) Cell encapsulation within PVA-based hydrogels via freeze-thawing: a one-step scaffold formation and cell storage technique. J Tissue Eng Regenerat Med 3(7):567–572

  86. 86.

    Qi X, Hu X, Wei W, Yu H, Li J, Zhang J, Dong W (2015) Investigation of Salecan/poly (vinyl alcohol) hydrogels prepared by freeze/thaw method. Carbohyd Polym 118:60–69

  87. 87.

    Yiamsawas D, Kangwansupamonkon W, Chailapakul O, Kiatkamjornwong S (2007) Synthesis and swelling properties of poly [acrylamide-co-(crotonic acid)] superabsorbents. React Funct Polym 67(10):865–882

  88. 88.

    Zhang D, Zhou W, Wei B, Wang X, Tang R, Nie J, Wang J (2015) Carboxyl-modified poly (vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. Carbohyd Polym 125:189–199

  89. 89.

    Biranje SS, Madiwale PV, Patankar KC, Chhabra R, Dandekar-Jain P, Adivarekar RV (2019) Hemostasis and anti-necrotic activity of wound-healing dressing containing chitosan nanoparticles. Int J Biol Macromol 121:936–946

  90. 90.

    Qi XN, Mou ZL, Zhang J, Zhang ZQ (2014) Preparation of chitosan/silk fibroin/hydroxyapatite porous scaffold and its characteristics in comparison to bi-component scaffolds. J Biomed Mater Res A 102(2):366–372

  91. 91.

    Mehrabani MG, Karimian R, Mehramouz B, Rahimi M, Kafil HS (2018) Preparation of biocompatible and biodegradable silk fibroin/chitin/silver nanoparticles 3D scaffolds as a bandage for antimicrobial wound dressing. Int J Biol Macromol 114:961–971

  92. 92.

    El Fawal GF, Abu-Serie MM, Hassan MA, Elnouby MS (2018) Hydroxyethyl cellulose hydrogel for wound dressing: fabrication, characterization and in vitro evaluation. Int J Biol Macromol 111:649–659

  93. 93.

    Pourjavadi A, Nazari M, Hosseini SH (2015) Synthesis of magnetic graphene oxide-containing nanocomposite hydrogels for adsorption of crystal violet from aqueous solution. RSC Adv 5(41):32263–32271

  94. 94.

    Ninan N, Muthiah M, Park I-K, Elain A, Thomas S, Grohens Y (2013) Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohyd Polym 98(1):877–885

  95. 95.

    Wittaya-areekul S, Prahsarn C (2006) Development and in vitro evaluation of chitosan–polysaccharides composite wound dressings. Int J Pharm 313(1–2):123–128

  96. 96.

    Riđanović L, Riđanović S, Jurica D, Spasojević P (2010) Evaluation of water temperature and dissolved oxygen regimes in River Neretva. BALWOIS Ohrid

  97. 97.

    Singh B, Pal L (2012) Sterculia crosslinked PVA and PVA-poly (AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties. J Mech Behav Biomed Mater 9:9–21

Download references

Author information

Correspondence to Muhammad Bilal Khan Niazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A., Niazi, M.B.K., Jahan, Z. et al. Enhancing the Thermal, Mechanical and Swelling Properties of PVA/Starch Nanocomposite Membranes Incorporating g-C3N4. J Polym Environ 28, 100–115 (2020) doi:10.1007/s10924-019-01592-y

Download citation

Keywords

  • Membranes
  • PVA
  • Starch
  • g-C3N4
  • Swelling
  • Hydrophilic
  • Nanocomposite