Advertisement

Journal of Polymers and the Environment

, Volume 28, Issue 1, pp 1–16 | Cite as

Review: Bio-polyethylene from Wood Wastes

  • C. M. Mendieta
  • M. E. Vallejos
  • F. E. Felissia
  • G. Chinga-Carrasco
  • M. C. AreaEmail author
Review

Abstract

There is a global trend of substitution of fossil fuels for renewable energy sources, which are preferred by reasons including sustainability, reduction of greenhouse gases that contribute to climate change, regional and social systems advancement, among others. This review is part of the studies carried out on the integral use of wood industrial wastes due to its low costs and high availability. A possible high-value product is ethylene, obtained by catalytic dehydration of second-generation bioethanol from lignocellulosic materials and which can be an effective alternative for the production of polymers such as polyethylene (PE), which is conventionally obtained from petroleum. Biobased polyethylene or biopolyethylene (BioPE) may potentially contribute to close a pine biorefinery scheme to obtain high-value products, using processes of low pollution and contributing to the global environmental balance. The process involves the following stages: pretreatment, enzymatic saccharification, fermentation, dehydration, and polymerization. This review includes the different processes for second generation (2G) bioethylene productions from pine wastes as an example and the technologies that can potentially be applied on an industrial scale for BioPE production, focusing on the catalytic dehydration of 2G bioethanol through the use of catalysts able to achieve high ethanol conversions and ethylene selectivity.

Keywords

Biorefinery Lignocellulosic biomass Heterogeneous catalysis Bioethylene Biopolyethylene 

Abbreviations

PE

Polyethylene

PVC

Polyvinylchloride

EHY

Enzymatic hydrolysis yield

EH

Enzymatic hydrolysis

AQ

Anthraquinone

SHF

Hydrolysis and fermentation

SSF

Simultaneous saccharification and fermentation

DMC

Direct microbial conversion

HMF

Hydroxymethylfurfural

PP

Polypropylene

E1

Mechanism of elimination reaction (unimolecular)

E2

Mechanism of elimination reaction (bimolecular)

SN1

Nucleophilic substitution reaction (unimolecular)

SN2

Nucleophilic substitution reaction (bimolecular)

Notes

Acknowledgements

This work has been funded by the National University of Missions, the National Scientific and Technical Research Council (CONICET), and the ValBio-3D project Grant ELAC2015/T03-0715 Valorization of residual biomass for advanced 3D materials (Ministry of Science, Technology and Innovation Production of Argentina, and Research Council of Norway, Grant No. 271054).

References

  1. 1.
    Association of Plastics Manufacturers (APM) (2018) Report-An analysis of European plastics production, demand and waste data. www.epro-plasticsrecycling.org. Accessed 2 Oct 2019
  2. 2.
    Ashter SA (2016) Introduction. Introduction to bioplastics engineering. Elsevier, Amsterdam, pp 1–17Google Scholar
  3. 3.
    Mohsenzadeh A, Zamani A, Taherzadeh MJ (2017) Bioethylene production from ethanol: a review and techno-economical evaluation. ChemBioEng Rev 4:75–91.  https://doi.org/10.1002/cben.201600025 CrossRefGoogle Scholar
  4. 4.
    Flieger M, Kantorová M, Prell A et al (2003) Biodegradable plastics from renewable sources. Rev Folia Microbiol 48:27–44.  https://doi.org/10.1007/BF02931273 CrossRefGoogle Scholar
  5. 5.
    Gowlett JAJ (2006) The early settlement of northern Europe: fire history in the context of climate change and the social brain. Comptes Rendus - Palevol 5:299–310.  https://doi.org/10.1016/j.crpv.2005.10.008 CrossRefGoogle Scholar
  6. 6.
    Binford LR, Ho CK (1985) Taphonomy at a distance: Zhoukoudian, “the cave home of Beijing man”? Curr Anthropol 26:413–442.  https://doi.org/10.1086/203303 CrossRefGoogle Scholar
  7. 7.
    Bozell JJ (2008) Feedstocks for the future - Biorefinery production of chemicals from renewable carbon. Clean - Soil Air, Water 36:641–647.  https://doi.org/10.1002/clen.200800100 CrossRefGoogle Scholar
  8. 8.
    Jakob M, Hilaire J (2014) Unburnable fossil-fuel reserves. Nature 517:150–152.  https://doi.org/10.1038/517150a CrossRefGoogle Scholar
  9. 9.
    Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098.  https://doi.org/10.1021/cr068360d CrossRefPubMedGoogle Scholar
  10. 10.
    McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46.  https://doi.org/10.1016/S0960-8524(01)00118-3 CrossRefPubMedGoogle Scholar
  11. 11.
    Vallejos ME, Kruyeniski J, Area MC (2017) Second-generation bioethanol from industrial wood waste of South American species. Biofuel Res J 4:654–667.  https://doi.org/10.18331/BRJ2017.4.3.4 CrossRefGoogle Scholar
  12. 12.
    Nova-Institute (2017) Report - Bioplastics market data. www.european-bioplastics.org/market. Accessed 2 Oct 2019. Berlin
  13. 13.
    Alshammari A, Kalevaru VN, Bagabas A, Martin A (2016) Production of ethylene and its commercial importance in the global market. In: Al-Megren H (ed) Petrochemical catalyst materials, processes, and emerging technologies. Advances in Chemical and Materials Engineering (ACME), IGI Global, Pennsylvania, pp 82–115CrossRefGoogle Scholar
  14. 14.
    Rebsdat S, Mayer D (2012) Ethylene glycol. Ullmann’s Encycl Ind Chem.  https://doi.org/10.1002/14356007.a10 CrossRefGoogle Scholar
  15. 15.
    Lewandowski S (2016) Report-Global Ethylene Market : Key Issues. https://ihsmarket.com. Accessed 2 Oct 2019
  16. 16.
    Warren RT (2013) Global ethylene capacity: poised for major expansion. Oil Gas J 111:90–95Google Scholar
  17. 17.
    Fan D, Dai DJ, Wu HS (2013) Ethylene formation by catalytic dehydration of ethanol with industrial considerations. Materials (Basel) 6:101–115.  https://doi.org/10.3390/ma6010101 CrossRefGoogle Scholar
  18. 18.
    McKechnie J, Pourbafrani M, Saville BA, MacLean HL (2015) Environmental and financial implications of ethanol as a bioethylene feedstock versus as a transportation fuel. Environ Res Lett 10:124018.  https://doi.org/10.1088/1748-9326/10/12/124018 CrossRefGoogle Scholar
  19. 19.
    Zacharopoulou V, Lemonidou A (2017) Olefins from biomass intermediates: a review. Catalysts 8:2.  https://doi.org/10.3390/catal8010002 CrossRefGoogle Scholar
  20. 20.
    Ramis G, Rossetti I, Trizpodi A, Compagnoni M (2017) Diluted bioethanol solutions for the production of hydrogen and ethylene. Chem Eng Trans 57:1663–1668.  https://doi.org/10.3303/CET1757278 CrossRefGoogle Scholar
  21. 21.
    Harsem P, Hackmann M (2013) Report-Green building blocks for biobased plastics. www.fbr.wur.nl. Accessed 2 Oct 2019
  22. 22.
    Hettinga WG, Junginger HM, Dekker SC et al (2009) Understanding the reductions in US corn ethanol production costs: an experience curve approach. Energy Policy 37:190–203.  https://doi.org/10.1016/j.enpol.2008.08.002 CrossRefGoogle Scholar
  23. 23.
    Koizumi T (2014) Biofuels and food security: biofuel impact on food security in Brazil, Asia and major producing countries. Biofuels and food security. Springer, New York, pp 13–32CrossRefGoogle Scholar
  24. 24.
    Morschbacker A (2009) Bio-ethanol based ethylene. Polym Rev 49:79–84.  https://doi.org/10.1080/15583720902834791 CrossRefGoogle Scholar
  25. 25.
    IRENA (2015) Report-ID + D Para Las Tecnologías de energías renovables: cooperation en América Latina y el Caribe. www.irena.org. Accessed 2 Oct 2019
  26. 26.
    Broeren M (2013) Report-Production of Bio-ethylene. www.iea-etsap.org
  27. 27.
    Chen JM, Yu B, Wei YM (2018) Energy technology roadmap for ethylene industry in China. Appl Energy 224:160–174.  https://doi.org/10.1016/j.apenergy.2018.04.051 CrossRefGoogle Scholar
  28. 28.
    Yakovleva IS, Banzaraktsaeva SP, Ovchinnikova EV et al (2016) Catalytic dehydration of bioethanol to ethylene. Catal Ind 8:152–167.  https://doi.org/10.1134/S2070050416020148 CrossRefGoogle Scholar
  29. 29.
    Nova-Chemicals (2010) Report-A World-Class Petrochemical Complex. www.novachemicals.com. Accessed 2 Oct 2019
  30. 30.
    Méndez A, Gorzycki FE, Rosa M (2016) Report-Informes de cadenas de valorGoogle Scholar
  31. 31.
    Puma (2011) Report-Annual and Sustainability. São Paulo, BrazilGoogle Scholar
  32. 32.
    Maity SK (2015) Opportunities, Recent Trends and Challenges of Integrated Biorefinery: part I Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renew Sustain Energy Rev 43:1427–1445CrossRefGoogle Scholar
  33. 33.
    Martinz D, Quadros J (2008) Report-Compounding PVC with renewable materials. BrasilGoogle Scholar
  34. 34.
    Azevedo L, Posen D, Griffin M, Matthews S (2015) Changing the renewable fuel standard to a renewable material standard: bioethylene case study. Enviromental Sci Technol 49:93–102.  https://doi.org/10.1021/es503521r CrossRefGoogle Scholar
  35. 35.
    European-Bioplastics (2016) Report-Biobased plastics—fostering a resource efficient circular economy. www.european-bioplastics.org. Accessed 2 Oct 2019
  36. 36.
    Brodin M, Vallejos M, Opedal MT et al (2017) Lignocellulosics as sustainable resources for production of bioplastics—a review. J Clean Prod 162:646–664.  https://doi.org/10.1016/j.jclepro.2017.05.209 CrossRefGoogle Scholar
  37. 37.
    New-Plastics-Economy (2016) Report-The New Plastics Economy. www.ellenmacarthurfoundation.org
  38. 38.
    Boehe DM (2011) Report-Braskem : the creation of a global-scale petrochemical companyGoogle Scholar
  39. 39.
    Melander AN, Qvint K (2016) Assessing the sustainability of first generation ethanol for bioethylene production. Chalmers University of TechnologyGoogle Scholar
  40. 40.
    Raele R, Boaventura JMG, Fischmann AA, Sarturi G (2014) Scenarios for the second generation ethanol in Brazil. Technol Forecast Soc Change 87:205–223.  https://doi.org/10.1016/j.techfore.2013.12.010 CrossRefGoogle Scholar
  41. 41.
    Sjöström E (1993) The structure of wood. In: Sjöström E (ed) Wood chemistry, 2nd edn. Elsevier, Amsterdam, pp 1–20Google Scholar
  42. 42.
    Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467.  https://doi.org/10.1016/j.pecs.2012.03.002 CrossRefGoogle Scholar
  43. 43.
    Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energy Policy.  https://doi.org/10.1016/j.enpol.2011.04.036 CrossRefGoogle Scholar
  44. 44.
    Zhang M, Yu Y (2013) Dehydration of ethanol to ethylene. Ind Eng Chem Res 52:9505–9514.  https://doi.org/10.1021/ie401157c CrossRefGoogle Scholar
  45. 45.
    Indufor (2018) Report-Global Market Analysis and Benchmarking Study Phase 1: Global Market Analysis. Indufor North America LLC, Washington & AucklandGoogle Scholar
  46. 46.
    EBTP (2016) Borregaard—commercial plant in Sarpsborg. Eur Biofuels Technol Platf, NorwayGoogle Scholar
  47. 47.
    Area MC, Vallejos ME, Bengoechea DI et al (2012) Biorrefinería a partir de residuos lignocelulósicos. Conversión de residuos a productos de alto valor. Editorial Académica Española, SaarbrückeGoogle Scholar
  48. 48.
    Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energy Policy 39:4222–4234.  https://doi.org/10.1016/j.enpol.2011.04.036 CrossRefGoogle Scholar
  49. 49.
    Bajpai P (2016) Structure of lignocellulosic biomass. In: Bajpai P (ed) Pretreatment of lignocellulosic biomass for biofuel production, 1st edn. Springer, Singapore, pp 8–12CrossRefGoogle Scholar
  50. 50.
    Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37.  https://doi.org/10.1385/ABAB:84-86:1-9:5 CrossRefPubMedGoogle Scholar
  51. 51.
    Zhu M, Zhu Z, Li X (2011) Bioconversion of paper sludge with low cellulosic content to ethanol by separate hydrolysis and fermentation. Afr J Biotechnol 10:15072–15083.  https://doi.org/10.5897/AJB11.1644 CrossRefGoogle Scholar
  52. 52.
    Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291.  https://doi.org/10.1007/s10295-003-0049-x CrossRefPubMedGoogle Scholar
  53. 53.
    Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19:1109–1117.  https://doi.org/10.1021/bp0340180 CrossRefPubMedGoogle Scholar
  54. 54.
    Kruyeniski J, Ferreira PJT, Carvalho MD et al (2019) Physical and chemical characteristics of pretreated slash pine sawdust influence its enzymatic hydrolysis. Ind Crops Prod 130:528–536.  https://doi.org/10.1016/j.indcrop.2018.12.075 CrossRefGoogle Scholar
  55. 55.
    Stoffel RB, Felissia FE, Silva Curvelo AA et al (2014) Optimization of sequential alkaline–acid fractionation of pine sawdust for a biorefinery. Ind Crops Prod 61:160–168.  https://doi.org/10.1016/j.indcrop.2014.06.047 CrossRefGoogle Scholar
  56. 56.
    Kreuter J (1996) Nanoparticles and microparticles for drug and vaccine delivery. J Anat 189(Pt 3):503–505.  https://doi.org/10.1002/bit CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Mosier NS, Hendrickson R, Brewer M et al (2005) Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. Appl Biochem Biotechnol 125:77–97.  https://doi.org/10.1385/ABAB:125:2:077 CrossRefPubMedGoogle Scholar
  58. 58.
    Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686.  https://doi.org/10.1016/j.biortech.2004.06.025 CrossRefGoogle Scholar
  59. 59.
    Kruyeniski IJ (2017) Influencia del pretratamiento de residuos forestoindustriales sobre la producción de bioetanol. Tesis Doctoral, Universidad Nacional de MisionesGoogle Scholar
  60. 60.
    Das P, Stoffel RB, Area MC, Ragauskas AJ (2019) Effects of one-step alkaline and two-step alkaline/dilute acid and alkaline/steam explosion pretreatments on the structure of isolated pine lignin. Biomass Bioenergy 120:350–358.  https://doi.org/10.1016/j.biombioe.2018.11.029 CrossRefGoogle Scholar
  61. 61.
    Yang B, Dai Z, Ding S-Y, Wyman CE (2014) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2:421–449.  https://doi.org/10.4155/bfs.11.116 CrossRefGoogle Scholar
  62. 62.
    Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M et al (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93.  https://doi.org/10.1016/j.rser.2013.06.033 CrossRefGoogle Scholar
  63. 63.
    Li S, Bashline L, Lei L, Gu Y (2014) Cellulose synthesis and its regulation. Arab B 12:1–21.  https://doi.org/10.1199/tab.0169 CrossRefGoogle Scholar
  64. 64.
    López-Miranda J, Soto-Cruz NO, Rutiaga-Quiñones OM et al (2009) Optimización del proceso de obtención enzimática de azúcares fermentables a partir de aserrín de pino. Rev Int Contam Ambient 25:95–102Google Scholar
  65. 65.
    Sannigrahi P, Miller SJ, Ragauskas AJ (2010) Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydr Res 345:965–970.  https://doi.org/10.1016/j.carres.2010.02.010 CrossRefPubMedGoogle Scholar
  66. 66.
    Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24.  https://doi.org/10.1016/S0168-1656(97)00073-4 CrossRefPubMedGoogle Scholar
  67. 67.
    Kim KH, Hong J (2001) Supercritical CO2pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77:139–144.  https://doi.org/10.1016/S0960-8524(00)00147-4 CrossRefPubMedGoogle Scholar
  68. 68.
    Donaldson LA, Wong KKY, Mackie KL (1988) Ultrastructure of steam-exploded wood. Wood Sci Technol 22:103–114.  https://doi.org/10.1007/BF00355846 CrossRefGoogle Scholar
  69. 69.
    Wong KKY, Deverell KF, Mackie KL et al (1988) The relationship between fiber porosity and cellulose digestibility in steam-exploded Pinus radiata. Biotechnol Bioeng 31:447–456.  https://doi.org/10.1002/bit.260310509 CrossRefPubMedGoogle Scholar
  70. 70.
    Stoffel RB, Neves PV, Felissia FE et al (2017) Hemicellulose extraction from slash pine sawdust by steam explosion with sulfuric acid. Biomass Bioenergy 107:93–101.  https://doi.org/10.1016/j.biombioe.2017.09.019 CrossRefGoogle Scholar
  71. 71.
    Imlauer C, Vergara P, Area MC, Revilla E, Felissia F, Villar JC (2019) Fractionation of Pinus radiata wood by combination of steam explosion and organosolv delignification. Maderas-Cienc Tecnol 3:21Google Scholar
  72. 72.
    Lim W, Lee J (2013) Influence of pretreatment condition on the fermentable sugar production and enzymatic hydrolysis of dilute acid-pretreated mixed softwood. Bioresour Technol 140:306–311.  https://doi.org/10.1016/j.biortech.2013.04.103 CrossRefPubMedGoogle Scholar
  73. 73.
    Huang F, Ragauskas AJ (2012) Dilute H2SO4 and SO2 pretreatments of Loblolly pine wood residue for bioethanol production. Ind Biotechnol 8:22–30.  https://doi.org/10.1089/ind.2011.0018 CrossRefGoogle Scholar
  74. 74.
    Charles N (2002) Oxygen Delignification as a Pretreatment for the Enzymatic. The university of British ColumbiaGoogle Scholar
  75. 75.
    Valenzuela R, Priebe X, Troncoso E et al (2016) Fiber modifications by organosolv catalyzed with H2SO4 improves the SSF of Pinus radiata. Ind Crop Prod 86:79–86.  https://doi.org/10.1016/j.indcrop.2016.03.037 CrossRefGoogle Scholar
  76. 76.
    Ximenes E, Kim Y, Mosier N et al (2011) Deactivation of cellulases by phenols. Enzyme Microb Technol 48:54–60.  https://doi.org/10.1016/j.enzmictec.2010.09.006 CrossRefPubMedGoogle Scholar
  77. 77.
    Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556.  https://doi.org/10.1016/j.tibtech.2006.10.004 CrossRefPubMedGoogle Scholar
  78. 78.
    Gu H, Zhang J, Bao J (2014) Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues. Bioresour Technol 157:6–13.  https://doi.org/10.1016/j.biortech.2014.01.060 CrossRefPubMedGoogle Scholar
  79. 79.
    Chu Q, Li X, Ma B et al (2012) Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue. Bioresour Technol 123:699–702.  https://doi.org/10.1016/j.biortech.2012.07.118 CrossRefPubMedGoogle Scholar
  80. 80.
    Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52:858–875.  https://doi.org/10.1016/j.enconman.2010.08.013 CrossRefGoogle Scholar
  81. 81.
    Arora A, Martin EM, Pelkki MH, Carrier DJ (2013) Effect of formic acid and furfural on the enzymatic hydrolysis of cellulose powder and dilute acid-pretreated poplar hydrolysates. ACS Sustain Chem Eng 1:23–28.  https://doi.org/10.1021/sc3000702 CrossRefGoogle Scholar
  82. 82.
    Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33.  https://doi.org/10.1016/S0960-8524(99)00161-3 CrossRefGoogle Scholar
  83. 83.
    Matano Y, Hasunuma T, Kondo A (2012) Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresour Technol 108:128–133.  https://doi.org/10.1016/j.biortech.2011.12.144 CrossRefPubMedGoogle Scholar
  84. 84.
    San Martín R, Perez C, Briones R (1995) Simultaneous production of ethanol and kraft pulp from pine (Pinus radiata) using steam explosion. Bioresour Technol 53:217–223.  https://doi.org/10.1016/0960-8524(95)00056-K CrossRefGoogle Scholar
  85. 85.
    Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146.  https://doi.org/10.1016/j.cbpa.2006.02.035 CrossRefPubMedGoogle Scholar
  86. 86.
    Alshammari A, Kalevaru VN, Bagabas A, Martin A (2016) Production of Ethylene and its Commercial Importance in the Global MarketGoogle Scholar
  87. 87.
    Hamelinck CN, Van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410.  https://doi.org/10.1016/j.biombioe.2004.09.002 CrossRefGoogle Scholar
  88. 88.
    Cardona Alzate CA, Sánchez Toro OJ (2006) Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy 31:2111–2123.  https://doi.org/10.1016/j.energy.2005.10.020 CrossRefGoogle Scholar
  89. 89.
    Chen G, Li S, Jiao F, Yuan Q (2007) Catalytic dehydration of bioethanol to ethylene over TiO2/g-Al2O3 catalysts in microchannel reactors. Catal Today 125:111–119.  https://doi.org/10.1016/j.cattod.2007.01.071 CrossRefGoogle Scholar
  90. 90.
    Ren T, Daniëls B, Patel MK, Blok K (2009) Petrochemicals from oil, natural gas, coal and biomass: production costs in 2030-2050. Resour Conserv Recycl 53:653–663.  https://doi.org/10.1016/j.resconrec.2009.04.016 CrossRefGoogle Scholar
  91. 91.
    Galvita VV, Semin GL, Belyaev VD et al (2001) Synthesis gas production by steam reforming of ethanol. Appl Catal 220:123–127.  https://doi.org/10.1016/S0926-860X(01)00708-6 CrossRefGoogle Scholar
  92. 92.
    Tanabe K, Misono M, Ono Y, Hattori H (1990) Their catalytic properties. In: Tanabe K (ed) New solid acids and bases, 2nd. Elsevier, Amsterdam, p 364Google Scholar
  93. 93.
    Zheng D-Q, Wu X-C, Tao X-L et al (2011) Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresour Technol 102:3020–3027.  https://doi.org/10.1016/j.biortech.2010.09.122 CrossRefPubMedGoogle Scholar
  94. 94.
    Srilekha Yadav K, Naseeruddin S, Sai Prashanthi G et al (2011) Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresour Technol 102:6473–6478.  https://doi.org/10.1016/j.biortech.2011.03.019 CrossRefPubMedGoogle Scholar
  95. 95.
    Fu N, Peiris P, Markham J, Bavor J (2009) A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose mixtures. Enzyme Microb Technol 45:210–217.  https://doi.org/10.1016/j.enzmictec.2009.04.006 CrossRefGoogle Scholar
  96. 96.
    Paysepar H (2018) Production of monomeric aromatics/phenolics from hydrolysis lignin (HL) by catalytic fast pyrolysis and hydrothermal liquefaction. Western OntarioGoogle Scholar
  97. 97.
    Wu C-Y, Wu H-S (2017) Ethylene formation from ethanol dehydration using ZSM-5 catalyst. ACS Omega 2:4287–4296.  https://doi.org/10.1021/acsomega.7b00680 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Ju X, Engelhard M, Zhang X (2013) An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass. Bioresour Technol 132:137–145.  https://doi.org/10.1016/j.biortech.2013.01.049 CrossRefPubMedGoogle Scholar
  99. 99.
    Noller H, Thomke K (1979) Transition states of catalytic dehydration and dehydrogenation of alcohols. J Mol Catal 6:375–392.  https://doi.org/10.1016/0304-5102(79)85013-0 CrossRefGoogle Scholar
  100. 100.
    Kruyeniski J, Felissia FE, Area MC (2017) Pretreatment soda-ethanol of pine and its influence on enzymatic hydrolysis. Rev Cienc y Tecnol 28:37–41Google Scholar
  101. 101.
    Smith MB, March J (2007) March’s advanced organic chemistry. Reactions, mechanisms, and structure, 6th edn. Wiley, Canada, pp 425–752Google Scholar
  102. 102.
    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11.  https://doi.org/10.1016/S0960-8524(01)00212-7 CrossRefPubMedGoogle Scholar
  103. 103.
    Hu Y, Zhan N, Dou C et al (2010) Selective dehydration of bio-ethanol to ethylene catalyzed by lanthanum-phosphorous-modified HZSM-5: influence of the fusel. Biotechnol J 5:1186–1191.  https://doi.org/10.1002/biot.201000139 CrossRefPubMedGoogle Scholar
  104. 104.
    Adkins H, Perkins PP (1925) Dehydration of alcohols over alumina. J Am Chem Soc 47:1163–1167.  https://doi.org/10.1021/ja01681a036 CrossRefGoogle Scholar
  105. 105.
    Phillips CB, Datta R (1997) Production of ethylene from hydrous ethanol on H-ZSM-5 under mild conditions. Ind Eng Chem Res 36:4466–4475.  https://doi.org/10.1021/ie9702542 CrossRefGoogle Scholar
  106. 106.
    Qi J, Zhao T, Xu X et al (2010) Physicochemical properties and catalytic performance of a novel aluminosilicate composite zeolite for hydrocarbon cracking reaction. China Pet Process Petrochemical Technol 5:17–22Google Scholar
  107. 107.
    Isa M, Duncan C (2011) Patent WO2011087478. Reducing impurities in ethylene. 11Google Scholar
  108. 108.
    V. C, N. T, T P et al (2014) Procede de Deshydratation de L’ Éthanol en Éthylene a Basse Consommation Énergétique. 31Google Scholar
  109. 109.
    Area MC, Park SW (2017) Bio-productos y bio-materiales a partir de la biorrefinería de residuos agro y forestoindustriales. In: Area MC, Park SW (eds) Panorama de la industria de celulosa y papel y materiales lignocelulósicos 2016, 1st edn. Universidad Nacional de Misiones, Unam, pp 120–151Google Scholar
  110. 110.
    Muñoz M, Catrilaf G (2013) Estimación de parámetros cinéticos de Saccharomyces cerevisiae en sistema de fermentación Batch bajo distintas condiciones de crecimiento. Procesos Agroindustriales 1–11Google Scholar
  111. 111.
    Walsh P, Jong E De, Higson A, et al (2012) Report-Bio-based Chemicals Value Added Products from Biorrefineries. AmsterdamGoogle Scholar
  112. 112.
    Zhang Q, Zhang P, Pei ZJ, Wang D (2013) Relationships between cellulosic biomass particle size and enzymatic hydrolysis sugar yield: analysis of inconsistent reports in the literature. Renew Energy 60:127–136.  https://doi.org/10.1016/j.renene.2013.04.012 CrossRefGoogle Scholar
  113. 113.
    Zhu JY, Pan X Jr, Zalesny RS (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87(3):847–857.  https://doi.org/10.1007/s00253-010-2654-8 CrossRefPubMedGoogle Scholar
  114. 114.
    Kokossis AC (2014) Report-design of integrated biorefineries. Elsevier, GreeceGoogle Scholar
  115. 115.
    Corradini E, Ito EN, Marconcini JM et al (2009) Interfacial behavior of composites of recycled poly(ethyelene terephthalate) and sugarcane bagasse fiber. Polym Test 28:183–187.  https://doi.org/10.1016/j.polymertesting.2008.11.014 CrossRefGoogle Scholar
  116. 116.
    Haro P, Ollero P, Trippe F (2013) Technoeconomic assessment of potential processes for bio-ethylene production. Fuel Process Technol 114:35–48.  https://doi.org/10.1016/j.fuproc.2013.03.024 CrossRefGoogle Scholar
  117. 117.
    Cai L, Ma Y, Ma X, Lv J (2016) Bioresource technology improvement of enzymatic hydrolysis and ethanol production from corn stalk by alkali and N-methylmorpholine-N-oxide pretreatments. Bioresour Technol 212:42–46.  https://doi.org/10.1016/j.biortech.2016.04.012 CrossRefPubMedGoogle Scholar
  118. 118.
    Nitzsche R, Budzinski M, Gröngröft A (2016) Bioresource technology techno-economic assessment of a wood-based biorefinery concept for the production of polymer-grade ethylene, organosolv lignin and fuel. Bioresour Technol 200:928–939.  https://doi.org/10.1016/j.biortech.2015.11.008 CrossRefPubMedGoogle Scholar
  119. 119.
    Zhang B, Shahbazi A (2011) Recent developments in pretreatment technologies for production of lignocellulosic biofuels. J Pet Environ Biotechnol.  https://doi.org/10.4172/2157-7463.1000108 CrossRefGoogle Scholar
  120. 120.
    Viikari L, Vehmaanperä J, Koivula A (2012) Lignocellulosic ethanol: from science to industry. Biomass Bioenergy 46:13–24.  https://doi.org/10.1016/j.biombioe.2012.05.008 CrossRefGoogle Scholar
  121. 121.
    Braskem (2017) Informe Anual 2017. 104Google Scholar
  122. 122.
    Sannigrahi P, Ragauskas AJ, Miller SJ (2008) Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in loblolly pine. BioEnergy Res 1:205–214.  https://doi.org/10.1007/s12155-008-9021-y CrossRefGoogle Scholar
  123. 123.
    Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8.  https://doi.org/10.1186/2194-0517-2-8 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Kuciel S, Jakubowska P, Kuz P (2014) Composites: part B A study on the mechanical properties and the influence of water uptake and temperature on biocomposites based on polyethylene from renewable sources. Compos Part B 64:72–77.  https://doi.org/10.1016/j.compositesb.2014.03.026 CrossRefGoogle Scholar
  125. 125.
    Zhao C, Qin H, Gong F et al (2005) Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polym Degrad Stab 87:183–189.  https://doi.org/10.1016/j.polymdegradstab.2004.08.005 CrossRefGoogle Scholar
  126. 126.
    Kubík Ľ, Zeman S (2014) Mechanical properties of polyethylene foils Mechanické vlastnosti polyetylénových fólií. J Cent Eur Agric 15:138–145.  https://doi.org/10.5513/JCEA01/15.1.1425 CrossRefGoogle Scholar
  127. 127.
    Morschbacker A, Eduardo C, Campos S, et al (2010) Chapter 7Google Scholar
  128. 128.
    Gnanavel G, Thirumarimurugan M, Valli MJ (2016) Biodegradation of oxo polyethylene: an approach using soil compost degraders. Int J Adv Eng Technol 7:140–144Google Scholar
  129. 129.
    Mohan SK, Suresh B (2015) Studies on biodegradation of plastics by aspergillus Sp. Isolated from dye effluent. Indo Am J Pharm Sci 2:1639Google Scholar
  130. 130.
    Tokiwa Y, Calabia B, Ugwu C, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742.  https://doi.org/10.3390/ijms10093722 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Scott G (1999) Polymers and the enviroment. Royal Society of Chemistry, Great BritainGoogle Scholar
  132. 132.
    Axelsson L, Franzén M, Ostwald M et al (2017) Sustainability assessment of glucose production technologies from highly recalcitrant softwood including scavengers. Biofuels Bioprod Biorefining.  https://doi.org/10.1002/bbb CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • C. M. Mendieta
    • 1
  • M. E. Vallejos
    • 1
  • F. E. Felissia
    • 1
  • G. Chinga-Carrasco
    • 2
  • M. C. Area
    • 1
    Email author
  1. 1.Instituto de Materiales de Misiones (IMAM)PosadasArgentina
  2. 2.RISE PFITrondheimNorway

Personalised recommendations