Fabrication of PVA/Nanoclay Hydrogel Nanocomposites and Their Microstructural Effect on the Release Behavior of a Potassium Phosphate Fertilizer

  • Shokoufeh Hakim
  • Mohammad Reza Rostami DarounkolaEmail author
  • HaniehTalari
  • Mohammad Barghemadi
  • Mahmoud Parvazinia
Original paper


Various PVA/nanoclay hydrogel nanocomposites with different weight fractions of nanoclay (0, 0.25, 0.5, 0.75 and 1) were prepared, characterized and their performances were investigated. The structures of the synthesized hydrogel nanocomposites and the samples loaded with a potassium phosphate fertilizer were proved by FTIR spectroscopy method. The interactions between the hydrogels and nanoclay and also the effect of fertilizer loading capacity on the nanocomposites were investigated using TGA method. TGA showed that the loading of the fertilizer decreased the hydrogel weight loss which was affected by the nanoclay weight percent. In addition, the effects of glutaraldehyde as crosslinking agent and incorporation of the nanoclay and fertilizer on the glass transition temperature of the prepared hydrogels were studied using DSC method. The Tg of the hydrogels increased by adding the nanoclay and decreased with the loading of the fertilizer. The SEM images showed that the microstructure and morphology of the hydrogel changed in the presence of the nanoclay and fertilizer. The increase of the nanoclay decreased the porosity of the hydrogel and made it denser. Furthermore, the EDX spectroscopy images of the samples proved the uniform dispersion of the fertilizer and nanoclay in the prepared hybrid hydrogels. The swelling of the hydrogels decreased with increasing of the nanoclay weight percent. The results showed that the swelling under load was the highest for the hydrogel nanocomposite with 0.5 wt% of the nanoclay. The increase of the nanoclay led to increasing of the physical networking that caused more desirable controlled release of the fertilizer.


PVA Nanoclay Potassium phosphate fertilizer Nanocomposite Agricultural hydrogels 



The authors greatfully acknowledge the financial support of this work by the Iran National Science Foundation.


  1. 1.
    Al-Sabagh AM, Abdeen Z (2010) J Polym Environ 18:576CrossRefGoogle Scholar
  2. 2.
    Distantina S, Rochmadi R, Fahrurrozi M, Wiratni W (2013) Eng J 17:57CrossRefGoogle Scholar
  3. 3.
    Kim EJ, Choi JS, Kim JS (2015) Biomacromol 17:4CrossRefGoogle Scholar
  4. 4.
    Elsayed MM (2019) J Polym Environ 27:871CrossRefGoogle Scholar
  5. 5.
    Luckachan GE, Pillai CKS (2011) J Polym Environ 19:637CrossRefGoogle Scholar
  6. 6.
    Junior CRF, Tanaka FN, Bortolin A (2018) J Therm Anal Calorim 131:2205CrossRefGoogle Scholar
  7. 7.
    Du C, Zhou J, Shaviv A (2006) J Polym Environ 14:223CrossRefGoogle Scholar
  8. 8.
    Nayan NHM, Hamzah MSA, Tahir AAM (2018) J Sci Tech 10:21Google Scholar
  9. 9.
    Ali S, Danafar F (2015) Life Sci J 12:33Google Scholar
  10. 10.
    Schexnailder P, Schmidt G (2009) Colloid Polym Sci 287:1CrossRefGoogle Scholar
  11. 11.
    Ghanaatian E, Entezam M (2019) J Appl Polym Sci 136:47843CrossRefGoogle Scholar
  12. 12.
    Noori S, Kokabi M, Hassan ZM (2015) Proc Mat Sci 11:152Google Scholar
  13. 13.
    Su T, Wu L, Pan X, Zhang C, Shi M, Gao R, Qi X, Dong W (2019) J Coll Int Sci 542:253CrossRefGoogle Scholar
  14. 14.
    Amiri S (2019) Silicon 11:1193CrossRefGoogle Scholar
  15. 15.
    Mohamed RR, Rizk NA, Abd El Hady BM, Abdallah HM, Sabaa MW (2017) J Polym Environ 25:667CrossRefGoogle Scholar
  16. 16.
    Sarkar S, Biswas S (2014) Proc Natl Acad Sci USA 85:415Google Scholar
  17. 17.
    Guo MY, Liu MZ, Zhan FL (2005) Ind Eng Chem Res 44:4206CrossRefGoogle Scholar
  18. 18.
    León O, Muñoz-Bonilla A, Soto D, Ramirez J, Marquez Y, Colina M, Fernández-García M (2018) J Polym Environ 26:728CrossRefGoogle Scholar
  19. 19.
    Jamnongkan T, Kaewpirom S (2010) J Polym Environ 18:413CrossRefGoogle Scholar
  20. 20.
    Sharma J, Sukriti, Kaith BS, Bhatti MS (2018) J Polym Environ 26:518CrossRefGoogle Scholar
  21. 21.
    Islam MS, Rahaman MS, Yeum JH (2015) Carbohydr Polym 115:69CrossRefGoogle Scholar
  22. 22.
    Chang J-H (2019) Nanomat 9:323CrossRefGoogle Scholar
  23. 23.
    Reis E, Campos FS, Lage AP, Leite RC, Heneine LG, Vasconcelos WL (2006) Mater Res 9:185CrossRefGoogle Scholar
  24. 24.
    Rostami Darounkola MR (2018) Polym Bull 75:4055CrossRefGoogle Scholar
  25. 25.
    Djonlagic J, Lancuski A, Nikolic MS, Rogan J, Ostojic S, Petrovic Z (2017) J Appl Polym Sci 134:44535CrossRefGoogle Scholar
  26. 26.
    Hosseinzadeh H (2013) Curr Chem Lett 2:153CrossRefGoogle Scholar
  27. 27.
    Părpăriţă E, Cheaburu CN, Pa-achia SF, Vasile C (2014) Act Chem IASI 22:75CrossRefGoogle Scholar
  28. 28.
    Karimi A, Wan Daud WMA (2017) Polym Comp 38:1086CrossRefGoogle Scholar
  29. 29.
    Chaykar AS, Goharpey F, Khademzadeh Yeganeh J (2016) RSC Adv 6:9693CrossRefGoogle Scholar
  30. 30.
    Horkay F, Tasaki I, Basser PJ (2000) Biomacromol 1:84CrossRefGoogle Scholar
  31. 31.
    Kenawya ER, Abdel-Hay FI, El-Newehya MH, Wnekb GE (2007) Mat Sci Eng A 459:390CrossRefGoogle Scholar
  32. 32.
    Sarkar K, Sen K (2018) J Environ Chem Eng 6:736CrossRefGoogle Scholar
  33. 33.
    Olad A, Zebhi H, Salari D, Mirmohseni AR, Reyhani Tabar A (2018) New J Chem 42:2758CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shokoufeh Hakim
    • 1
  • Mohammad Reza Rostami Darounkola
    • 1
    Email author
  • HaniehTalari
    • 1
  • Mohammad Barghemadi
    • 1
  • Mahmoud Parvazinia
    • 1
  1. 1.Polymerization Engineering DepartmentIran Polymer and Petrochemical Institute (IPPI)TehranIran

Personalised recommendations