Advertisement

Removal of Methylene Blue from Water by Copper Alginate/Activated Carbon Aerogel: Equilibrium, Kinetic, and Thermodynamic Studies

  • 82 Accesses

Abstract

Activated carbon adsorption method was the most commonly used in the flied of the sewerage treatment due to large adsorption capacity, high adsorption efficiency, convenient operation and high regeneration rate. Despite this, the poor aqueous dispersion has a potential to cause loss of the adsorbent and affect water quality. The dispersion state of the activated carbons can be controlled effectively by aerogel. In this paper, copper alginate/activated carbon (CA/AC) aerogel was prepared by using the ionic gelation method. The CA/AC aerogel was characterized by scanning electron microscope (SEM), Fourier Transform infrared spectroscopy (FTIR) and Brunauer–Emmett–Teller (BET) surface area. Methylene blue (MB) was served as the adsorbate. The effect of adsorbent dose, contact time, initial MB concentration and temperature was studied systematically on adsorption performance of CA/AC. Testing results showed that CA/AC aerogel has high BET surface area of 319.64 m2/g and high adsorption capacity of 446.43 mg/g at 303 K. The equilibrium of methylene blue removal process by CA/AC aerogel were well described by the Langmuir isotherm model and Freundlich isotherm model. The results of the thermodynamic investigations indicated that the adsorption reactions were spontaneous, exothermic and the adsorption kinetics of methylene blue on CA/AC aerogel was best fitted to the pseudo-second-order kinetic model.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Sun J, Sun S, Wang G, Qiao L (2007) Dyes Pigm 74:647

  2. 2.

    El-Sheekh MM, Gharieb MM, Abou-El-Souod GW (2009) Int Biodeterior Biodegrad 63:69

  3. 3.

    Pablo CI, Fabiola M, Carlos J, Justo L, Rodrigo MA (2006) Environ Sci Technol 40:6418

  4. 4.

    Salem IA, El-Maazawi MS (2000) Chemosphere 41:1173

  5. 5.

    Slokar YM, Marechal ML (1998) Dyes Pigm 37:335

  6. 6.

    Hassan AF, Abdelmohsen AM, Fouda MM (2014) Carbohydr Polym 102:192

  7. 7.

    Wang Y, Li Y, Li H, Zheng H, Du Q (1342l) J Polym Environ 27:1342l

  8. 8.

    Li Y, Du Q, Liu T, Sun J, Wang Y, Wu S, Wang Z, Xia Y, Xia L (2013) Carbohydr Polym 95:501

  9. 9.

    Sarmento B, Martins S, Ribeiro A, Veiga F, Neufeld R, Ferreira D (2006) Int J Pept Res Ther 12:131

  10. 10.

    Nasrullah A, Bhat AH, Naeem A, Isa MH, Danish M (2018) Int J Biol Macromol 107:1792

  11. 11.

    Li Y, Liu F, Bing X, Du Q, Pan Z, Wang D, Wang Z, Xia Y (2010) J Hazard Mater 177:876

  12. 12.

    Mahmoodi NM, Hayati B, Arami M, Bahrami H (2011) Desalination 275:93

  13. 13.

    Rocher V, Siaugue JM, Cabuil V, Bee A (2008) Water Res 42:1290

  14. 14.

    Yan W, Han GT, Ying G, Yuan MZ, Yan ZX, Chang QY, Da WW (2011) Adv Mater Res 152–153:1351

  15. 15.

    Zhou K, Li Y, Li Q, Du Q, Wang D, Sui K, Wang C, Li H, Xia Y (2018) J Polym Environ 26:3362

  16. 16.

    Nasrullah A, Saad B, Bhat AH, Khan AS, Danish M, Isa MH, Naeem A (2019) J Clean Prod 211:1190

  17. 17.

    Duranoğlu D (2012) Energy Sources 34:12

  18. 18.

    East M (2016) Pure Appl Chem 38:25

  19. 19.

    Oladipo AA, Gazi M (2014) J Water Process Eng 2:43

  20. 20.

    Vadivelan V, Kumar KV (2005) J Colloid Interface Sci 286:90

  21. 21.

    Debnath S, Ghosh UC (2009) Chem Eng J 152:480

  22. 22.

    Hameed BH, Ahmad AA (2009) J Hazard Mater 164:870

  23. 23.

    Li L, Fan L, Sun M, Qiu H, Li X, Duan H, Luo C (2013) Int J Biol Macromol 58:169

  24. 24.

    Gupta VK, Pathania D, Sharma S, Agarwal S, Singh P (2013) J Mol Liq 177:343

  25. 25.

    Zamani S, Tabrizi NS (2015) Res Chem Intermed 41:7945

  26. 26.

    He B, Zheng T, Wang F, Lu L (2016) Chin J Environ Eng 10:3005

  27. 27.

    Li Y, Du Q, Liu T, Peng X, Wang J, Sun J, Wang Y, Wu S, Wang Z, Xia Y (2013) Chem Eng Res Des 91:361

  28. 28.

    Dural MU, Cavas L, Papageorgiou SK, Katsaros FK (2011) Chem Eng J 168:77

  29. 29.

    Doğan M, Alkan M, Demirbaş Ö, Özdemir Y, Özmetin C (2006) Chem Eng J 124:89

  30. 30.

    Yuh-Shan H (2006) Water Res 40:119

  31. 31.

    Duman O, Ayranci E (2010) J Hazard Mater 174:359

  32. 32.

    Yasar N, Emine M (2009) Bioresour Technol 99:2375

  33. 33.

    Li Y, Zhang P, Du Q, Peng X, Liu T, Wang Z, Xia Y, Zhang W, Wang K, Zhu H (2011) J Colloid Interface Sci 363:348

  34. 34.

    Purkait MK, Maiti A, Dasgupta S, De S (2007) J Hazard Mater 145:287

Download references

Acknowledgements

We appreciate the financial support from the Qingdao Postdoctoral Science Foundation, National Natural Science Foundation of China (Grant No. 51672140), Natural Science Foundation of Shandong Province (Grant No. ZR2015EM038) and Taishan Scholar Program of Shandong Province (Grant No. 201511029)

Author information

Correspondence to Yanhui Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, Y., Zhang, X. et al. Removal of Methylene Blue from Water by Copper Alginate/Activated Carbon Aerogel: Equilibrium, Kinetic, and Thermodynamic Studies. J Polym Environ 28, 200–210 (2020) doi:10.1007/s10924-019-01577-x

Download citation

Keywords

  • Copper alginate/activated carbon
  • Aerogel
  • Adsorption
  • Methylene blue