Effect of Surface Functionalization of SiO2 Nanoparticles on the Dynamic Mechanical, Thermal and Fire Properties of Wheat Straw/LDPE Composites

  • Behzad KordEmail author
  • Mohammad Dahmardeh Ghalehno
  • Farnaz Movahedi
Original paper


The scope of the present article is to study the effect of surface functionalization of SiO2 nanoparticles on the dynamic mechanical, thermal and fire properties of wheat straw flour (WSF) reinforced low-density polyethylene (LDPE) composites. Firstly, the SiO2 nanoparticles were modified by 3-aminopropyl-trimethoxysilane (APTMS), and then the WSF/LDPE composites containing different percentages of modified nano-SiO2 were prepared via a melt compounding using an internal mixer followed by injection molding. Changes in the chemical structure of treated SiO2 were tracked by Fourier transform infrared (FTIR). The appearance of N–H bond at 695 cm−1 and aliphatic C–H bonds at 2841 cm−1 and 2947 cm−1 were indications of successful grafting of APTMS on the SiO2 nanoparticles. Finally, the viscoelastic behavior, thermal stability and fire retardancy of the nanocomposites were evaluated by means of DMTA, TGA, DSC and CCT techniques. Results indicated that the dynamic modulus of the composites was greatly improved through the addition of functionalized SiO2 nanoparticles. In general, the specimens filled with 3 phr modified nano-SiO2 showed the highest values of storage and loss modulus compared with the other ones. Moreover, the tan δ peak signifying the glass transition temperature of nanocomposites shifted to higher temperature. The TGA results demonstrated that the introduction of APTMS grafted SiO2 nanoparticles can distinctly enhance thermal stability of the composites by increasing the thermo-oxidation decomposition temperature and char residues. The maximum activation energy value represents a higher thermal stability of the nanocomposites was obtained with modified nano-SiO2 at 5 phr content. In addition, the DSC data revealed that both the melting temperature and the degree of crystallinity of the specimens tended to substantially increase in presence of modified nano-SiO2. The surface functionalization of SiO2 particles produced remarkable evolution in the fire performance as indicated by reductions in the heat release rate, burning rate and mass loss rate. Furthermore, promoting the time to ignition and limiting oxygen index of the specimens equally to accommodate the addition of treated SiO2 nanoparticles.


Surface functionalization SiO2 nanoparticles Dynamic modulus Glass transition temperature Thermal stability Fire performance 



  1. 1.
    Klyosov AA (2007) Wood-plastic composites. Wiley, Hoboken, p 702CrossRefGoogle Scholar
  2. 2.
    Oksman K, Sain M (2008) Wood-polymer composites. Woodhead Publishing Ltd, Cambridge, UK, p 366CrossRefGoogle Scholar
  3. 3.
    Haider A, Eder A (2010) Markets, applications, and processes for wood polymer composites (WPCs) in Europe. In: Proceedings: 1st international conference on processing technologies for the forest and bio-based products industries, Austria, pp 146–154Google Scholar
  4. 4.
    Smith S (2014) Wood-plastic composites: technologies and global markets. BCC Research Report, UK, p 170Google Scholar
  5. 5.
    Rowell RM, Sandi AR, Gatenholm DF, Jacobson RE (1997) Utilization of natural fibers in plastic composites: problem and opportunities in lignocellulosic composites. J Compos Mater 18:23–51Google Scholar
  6. 6.
    Karnani C, Krishnan M, Narayan R (1999) Biofiber-reinforced polypropylene composites. Polym Eng Sci 32(7):476–483Google Scholar
  7. 7.
    Panthapulakkal S, Sain M (2007) Agro-residue reinforced high density polyethylene composites: fiber characterization and analysis of composite properties. Compos Part A 38(6):1445–1454CrossRefGoogle Scholar
  8. 8.
    Yao F, Wu Q, Lei Y, Xu Y (2008) Rice straw fiber-reinforced high-density polyethylene composite: effect of fiber type and loading. Ind Crops Prod 28(1):63–72CrossRefGoogle Scholar
  9. 9.
    Panthapulakkal S, Sain M (2015) The use of wheat straw fibres as reinforcements in composites. Biofiber Reinf Compos Mater 14:423–453CrossRefGoogle Scholar
  10. 10.
    Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites: a review. J Mater Sci Eng 53:73–197CrossRefGoogle Scholar
  11. 11.
    Viswanathan V, Laha T, Balani K, Agarwal A, Seal S (2006) Challenges and advances in nanocomposites processing techniques: a review. J Mater Sci Eng 54:121–285CrossRefGoogle Scholar
  12. 12.
    Dufresne A, Thomas S, Pothan LA (2013) Biopolymer nanocomposites processing, properties, and applications. Wiley, Hoboken, p 684CrossRefGoogle Scholar
  13. 13.
    Gu R, Kokta BV, Michalkova D, Dimzoski B, Fortelny I, Slouf M, Krulis Z (2010) Characteristics of wood-plastic composites reinforced with organo-nanoclays. J Reinf Plast Compos 29(24):3566–3586CrossRefGoogle Scholar
  14. 14.
    Turku I, Kärki T (2014) Research progress in wood-plastic nanocomposites: a review. J Thermoplast Compos Mater 27(2):180–204CrossRefGoogle Scholar
  15. 15.
    Chaharmahali M, Ebrahimi GH, Hamzeh Y, Ashori A, Ghasemi I (2014) Effects of nano-graphene on the physico-mechanical properties of bagasse/polypropylene composites. Polym Bull 71:337–349CrossRefGoogle Scholar
  16. 16.
    Kaymakci A, Ayrilmis N, Gulec T, Tufan M (2017) Preparation and characterization of high-performance wood polymer nanocomposites using multi-walled carbon nanotubes. J Compos Mater 51(9):1187–1195CrossRefGoogle Scholar
  17. 17.
    Kord B, Roohani M (2017) Water transport kinetics and thickness swelling behavior of natural fiber-reinforced HDPE/CNT nanocomposite. Compos Part B 126:94–99CrossRefGoogle Scholar
  18. 18.
    Lu H, Xu X, Li X, Zhang Z (2006) Morphology, crystallization and dynamic mechanical properties of PA66/nano-SiO2 composites. Bull Mater Sci 29(5):485–490CrossRefGoogle Scholar
  19. 19.
    Pu Z, Tang H, Huang X, Yang J, Zhan Y, Zhao R, Liu X (2012) Effect of surface functionalization of SiO2 particles on the interfacial and mechanical properties of PEN composite films. Colloids Surf A 415:125–133CrossRefGoogle Scholar
  20. 20.
    Xiong L, Lian Z, Liang H, Huang S, Fan H (2013) Influence of silica nanoparticles functionalized with poly(butyl acrylate-co-glycidyl methacrylate)g-diaminodiphenyl sulfone on the mechanical and thermal properties of bismaleimide nanocomposites. Polym Compos 34(12):2154–2159CrossRefGoogle Scholar
  21. 21.
    Liu S, Eijkelenkamp R, Duvigneau J, Julius-Vancso G (2017) Silica-assisted nucleation of polymer foam cells with nanoscopic dimensions: impact of particle size, line tension, and surface functionality. ACS Appl Mater Interfaces 9:37929–37940PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Nourbakhsh A, Farhani-Baghlani F, Ashori A (2011) Nano-SiO2 filled rice husk/polypropylene composites: physico-mechanical properties. Ind Crops Prod 33:183–187CrossRefGoogle Scholar
  23. 23.
    Deka BK, Maji TK (2012) Effect of silica nanopowder on the properties of wood flour/polymer composite. Polym Eng Sci 52(7):1516–1523CrossRefGoogle Scholar
  24. 24.
    Devi RR, Maji TK (2012) Effect of nano-SiO2 on properties of wood/polymer/clay nanocomposites. Wood Sci Technol 46:1151–1168CrossRefGoogle Scholar
  25. 25.
    Deka BK (2013) Maji TK (2013) Effect of SiO2 and nanoclay on the properties of wood polymer nanocomposite. Polym Bull 70(2):403–417CrossRefGoogle Scholar
  26. 26.
    Hosseini B, Jamalirad L, Hedjazi S, Sukhtesaraie A (2014) Effect of nano-SiO2 on physical and mechanical properties of fiber reinforced composites (FRCs). J Indian Acad Wood Sci 11(2):116–121CrossRefGoogle Scholar
  27. 27.
    Pan M, Mei C, Du J, Li G (2014) Synergistic effect of nano silicon dioxide and ammonium polyphosphate on flame retardancy of wood fiber–polyethylene composites. Compos Part A 66:128–134CrossRefGoogle Scholar
  28. 28.
    Mohseni-Tabar M, Tabarsa T, Mashkour M, Khazaeian A (2015) Using silicon dioxide (SiO2) nano-powder as reinforcement for walnut shell flour/HDPE composite materials. J Indian Acad Wood Sci 12(1):15–21CrossRefGoogle Scholar
  29. 29.
    Farsi M (2017) Effect of nano-SiO2 and bark flour content on the physical and mechanical properties of wood–plastic composites. J Polym Environ 25(2):308–314CrossRefGoogle Scholar
  30. 30.
    Taylor I, Howard AG (1993) Measurement of primary amine groups on surface-modified silica and their role in metal binding. Anal Chim Acta 271(1):77–82CrossRefGoogle Scholar
  31. 31.
    Gao X, He J, Deng L, Cao H (2009) Synthesis and characterization of functionalized rhodamine B-doped silica nanoparticles. Opt Mater 31:1715–1719CrossRefGoogle Scholar
  32. 32.
    Chiang CH, Ishida H, Koenig JL (1981) Fourier transform infrared spectroscopic study of the adsorption of multiple amino silane coupling agents on glass surfaces. J Colloid Interface Sci 83(2):361–370CrossRefGoogle Scholar
  33. 33.
    Perreira C, Silva JF, Perreira AM, Araujo JP, Blanco G, Pintado JM, Freire C (2011) [VO(acac)2] hybrid catalyst: from complex immobilization onto silica nanoparticles to catalytic application in the epoxidation of geraniol. Catal Sci Technol 1(5):784–793CrossRefGoogle Scholar
  34. 34.
    Huang Y, Jiang S, Wu L, Hua Y (2004) Characterization of LLDPE/nano-SiO2 composites by solid-state dynamic mechanical spectroscopy. Polym Test 23:9–15CrossRefGoogle Scholar
  35. 35.
    Dong Y, Shen X, Zhang S, Li J (2015) Dynamic mechanical properties and thermal stability of furfuryl alcohol and nano-SiO2 treated poplar wood. In: Global Conference on Polymer and Composite Materials (PCM2015), China, pp 1–6Google Scholar
  36. 36.
    Sahraeian R, Esfandeh M, Hashemi SA (2013) Rheological, thermal and dynamic mechanical studies of the LDPE/Perlite nanocomposites. Polym Polym Compos 21(4):243–249Google Scholar
  37. 37.
    Yang J, Lin Y, Wang J, Lai M, Li J, Liu J, Tong X, Cheng H (2005) Morphology, thermal stability and dynamic mechanical properties of atactic polypropylene/carbon nanotubes composites. J Appl Polym Sci 98(3):1087–1091CrossRefGoogle Scholar
  38. 38.
    Praveen S, Chattopadhyay PK, Chakraborty BC, Jayendran S, Chattopadhyay S (2010) Effect of nanoclay on the mechanical and damping properties of aramid short fiber-filled styrene butadiene rubber composites. Polym Int 59:187–197Google Scholar
  39. 39.
    Venkatesh GS, Deb A, Karmarkar A, Chauhan SC (2012) Effect of nanoclay content and compatibilizer on viscoelastic properties of montmorillonite/ polypropylene nanocomposites. Mater Des 37:285–291CrossRefGoogle Scholar
  40. 40.
    Nobile MR, Simon GP, Valentino O, Marcon M (2007) Rheological and structure investigation of melt mixed multi-walled carbon nanotubes/PE composites. Macromol Sympo 247(1):78–87CrossRefGoogle Scholar
  41. 41.
    Uma Devi L, Bhagawan SS, Tho S (2010) Dynamic mechanical analysis of pineapple leaf/glass hybrid fiber reinforced polyester composites. Polym Compos 31(6):956–965Google Scholar
  42. 42.
    Romanzini D, Ornaghi HL Jr, Amico SC, Zattera AJ (2012) Influence of fiber hybridization on the dynamic mechanical properties of glass/ramie fiber-reinforced polyester composites. J Reinf Plast Compos 31(23):1652–1661CrossRefGoogle Scholar
  43. 43.
    Tajvidi M, Takemura M (2009) Effect of fiber content and type, compatibilizer, and heating rate on thermogravimetric properties of natural fiber high density polyethylene composites. Polym Compos 30(9):1226–1233CrossRefGoogle Scholar
  44. 44.
    Yang HS, Wolcott MP, Kim HS, Kim HJ (2005) Thermal properties of lignocellulosic filler-thermoplastic polymer bio-composite. J Therm Anal Calorim 82:157–160CrossRefGoogle Scholar
  45. 45.
    Zabihzadeh SM, Ebrahimi GH, Enayati A (2011) Effect of compatibilizer on mechanical, morphological, and thermal properties of chemi-mechanical pulp-reinforced PP composites. J Thermo Compos Mater 24:221–231CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Behzad Kord
    • 1
    Email author
  • Mohammad Dahmardeh Ghalehno
    • 2
  • Farnaz Movahedi
    • 1
  1. 1.Department of Cellulosic Materials and Packaging, Chemistry and Petrochemistry Research CenterStandard Research Institute (SRI)KarajIran
  2. 2.Department of Wood and Paper Sciences and TechnologyUniversity of ZabolZabolIran

Personalised recommendations