Journal of Polymers and the Environment

, Volume 27, Issue 12, pp 2842–2852 | Cite as

Polymeric Hydrogel Pipes for Irrigation Application

  • Mohammad SirousazarEmail author
  • Elham Ghanizadeh
  • Behnam Rezazadeh
  • Vahid Abbasi-Chianeh
  • Farshad Kheiri
Original Paper


A novel generation of irrigation systems was introduced on the basis of hydrophilic, swellable, permeable, soft and flexible pipes using polymeric hydrogels. The prepared hydrogel pipes can connect to a water reservoir and buried around the root of the plant and continuously permeate water molecules directly to the root. The hydrogel pipes containing 9, 12 and 15 wt% of polyvinyl alcohol were prepared using a facile cyclic freezing–thawing technique. The effect of the polyvinyl alcohol loading level on the structural, physical and mechanical properties of the hydrogel pipes was investigated using the gel fraction, scanning electron microscopy, dynamic mechanical–thermal analysis, swelling and dehydration tests. The irrigating performances of the prepared pipes were investigated at the laboratory-scale by taking into account the effects of the polyvinyl alcohol loading level in hydrogels and the thickness of pipes. The results showed that the polyvinyl alcohol loading level has a direct effect on the gel fraction and mechanical strength of the hydrogel pipes. However, the pore size and the swelling and dehydration abilities of the hydrogel pipes were inversely depended on the polyvinyl alcohol loading level. The prepared hydrogel pipes successfully passed the laboratory-scale irrigation study and it was shown that a typical hydrogel pipe with an outer diameter of 15 mm and a length of 150 mm can continuously permeate water molecules to the soil and keep a permanent moist condition in soil around the pipe, using less than 700 mL water per 3 months.


Hydrogel pipe Polyvinyl alcohol Subsurface irrigation Permeability 



  1. 1.
    Cannazza G, Cataldo A, Benedetto ED, Demitri C, Madaghiele M, Sannino A (2014) Water 6:2056–2069CrossRefGoogle Scholar
  2. 2.
    Doll P (2002) Clim Change 54:269–293CrossRefGoogle Scholar
  3. 3.
    Kazeminejadfard F, Hojjati MR (2019) J Appl Polym Sci 136:47365CrossRefGoogle Scholar
  4. 4.
    Feng D, Bai B, Wang H, Suo Y (2017) J Agric Food Chem 65:5896–5907CrossRefGoogle Scholar
  5. 5.
    Zaharia A, Radu AL, Iancu S et al (2018) RSC Adv 8:17635–17644CrossRefGoogle Scholar
  6. 6.
    Guilherme MR, Aouada FA, Fajardo AR et al (2015) Eur Polym J 72:365–385CrossRefGoogle Scholar
  7. 7.
    Chai Q, Jiao Y, Yu X (2017) Gels 3:6CrossRefGoogle Scholar
  8. 8.
    Behrouzi M, Moghadam PN (2018) Carbohydr Polym 202:227–235CrossRefGoogle Scholar
  9. 9.
    Ma J, Li X, Bao Y (2015) RSC Adv 5:59745–59757CrossRefGoogle Scholar
  10. 10.
    Demitri C, Scalera F, Madaghiele M, Sannino A, Maffezzoli A (2013) Int J Polym Sci 6:435073Google Scholar
  11. 11.
    Sannino A, Demitri C, Madaghiele M (2009) Materials 2:353–373CrossRefGoogle Scholar
  12. 12.
    Zohuriaan-Mehr MJ, Kabiri K (2008) Iran Polym J 17:451–477Google Scholar
  13. 13.
    Parvathy PC, Jyothi AN (2012) Starch 64:207–218CrossRefGoogle Scholar
  14. 14.
    Camp CRC (1998) Trans ASAE 41:1353–1367CrossRefGoogle Scholar
  15. 15.
    Lamm FR (2016) Trans ASABE 59:263–278CrossRefGoogle Scholar
  16. 16.
    Quinones-Bolanos E, Zhou H, Parkin G (2006) J Environ Eng 131:1633–1643CrossRefGoogle Scholar
  17. 17.
    Quinones-Bolanos E, Zhou H, Soundararajan R, Otten L (2005) J Membr Sci 252:19–28CrossRefGoogle Scholar
  18. 18.
    Sule M, Jiang J, Templeton M, Huth E, Brant J, Bond T (2013) Environ Technol 34:1329–1339CrossRefGoogle Scholar
  19. 19.
    Todman LC, Chhang A, Riordan HJ, Brooks D (2018) J Environ Eng 144:04018048CrossRefGoogle Scholar
  20. 20.
    Gajra B, Pandya SS, Vidyasagar G, Rabari H, Dedania RR, Rao S (2012) Int J Pharm Res 4:20–26Google Scholar
  21. 21.
    Elsayed MM (2019) J Polym Environ 27:871–891CrossRefGoogle Scholar
  22. 22.
    Kamoun EA, Kenawy ES, Chen X (2017) J Adv Res 8:217–233CrossRefGoogle Scholar
  23. 23.
    Ahmed EM (2015) J Adv Res 6:105–121CrossRefGoogle Scholar
  24. 24.
    Jahani-Javanmardi A, Sirousazar M, Shaabani Y, Kheiri F (2016) J Biomater Sci Polym Ed 27:1262–1276CrossRefGoogle Scholar
  25. 25.
    Sirousazar M, Jahani-Javanmardi A, Kheiri F, Hassan ZM (2016) J Biomater Sci Polym Ed 27:1569–1583CrossRefGoogle Scholar
  26. 26.
    Deka C, Deka D, Bora MM, Jha DK, Kakati DK (2018) J Polym Environ 26:4034–4045CrossRefGoogle Scholar
  27. 27.
    Sirousazar M (2013) J Drug Deliv Sci Technol 23:619–621CrossRefGoogle Scholar
  28. 28.
    Shaabani Y, Sirousazar M, Kheiri F (2016) J Macromol Sci B 55:849–865CrossRefGoogle Scholar
  29. 29.
    El Salmawi KM (2007) J Macromol Sci A 44:541–545CrossRefGoogle Scholar
  30. 30.
    Sirousazar M, Kokabi M, Hassan ZM, Bahramian AR (2012) J Macromol Sci B 51:1583–1595CrossRefGoogle Scholar
  31. 31.
    Hassan CM, Peppas NA (2000) Macromolecules 33:2472–2479CrossRefGoogle Scholar
  32. 32.
    Shaabani Y, Sirousazar M, Kheiri F (2016) Appl Clay Sci 126:287–296CrossRefGoogle Scholar
  33. 33.
    Holloway JL, Spiller KL, Lowman AM, Palmese GR (2011) Acta Biomater 7:2477–2482CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Chemical EngineeringUrmia University of TechnologyUrmiaIran
  2. 2.Materials Engineering GroupUrmia University of TechnologyUrmiaIran

Personalised recommendations