Journal of Polymers and the Environment

, Volume 27, Issue 11, pp 2509–2522 | Cite as

Effect of Natural and Accelerated Aging on the Mechanical Performance of a Composite Based on Recycled Multilayer Carton

  • M. C. Chan-Koyoc
  • Ricardo H. Cruz-Estrada
  • V. J. Cruz-Delgado
  • J. G. CarrilloEmail author
Original paper


A composite elaborated from waste material was studied for its proposed use as a wood plastic composite. Multilayer food cartons and recycled high density polyethylene were used for the elaboration of laminates, in a proportion of 55% and 45% volume fraction, respectively. The samples were subjected to an aging in an accelerated weathering (AW) chamber for 0, 500, 1000 and 2000 h with UVB radiation, temperature and humidity cycles. Samples exposed to natural weathering (NW) for 0, 1300, 2600 and 5200 h, in a warm sub-humid environment were also studied, the aim being to elucidate a correlation of the useful lifespan of the material. In both cases, after the exposure, three-point bend tests were performed to evaluate the effect on the mechanical properties. The analysis of the degradation process was carried out by infrared spectroscopy, indicating that the AW and NW samples showed deterioration of the material in different proportions. By mean of thermal analysis, it was possible to associate the degradation with the appearance and/or growth of the endothermic peaks, showing a variation in the melting temperature as the time of exposure to AW and NW increased, resulting in a change in the crystallinity percentage. The modulus of rupture (MOR) and the flexural modulus of elasticity decreased by 20% in samples subjected to AW for 2000 h; while in the samples exposed to NW, required of 5200 h to obtain a reduction of 16% in the MOR.


Aging Multilayer carton Mechanical properties Recycled HDPE 



This work was supported by the project CONAFOR-CONACYT, Grant Number 175578. The authors thank Rossana Vargas-Coronado and Ricardo A. Gamboa-Castellanos for the technical assistance.


  1. 1.
    Climate and Natural Resources Secretary (SEMARNAT) (2012) México. Accessed 10 Apr 2018
  2. 2.
    Organization for Economic Cooperation and Development (OECD) (2014) Last Accessed 10 Apr 2018
  3. 3.
    Climate and Natural Resources Secretary (SEMARNAT) (2014) Accessed 10 Apr 2018
  4. 4.
    Organization for Economic Cooperation and Development (OECD) (2014) Accessed 10 Apr 2018
  5. 5.
    Sommerhuber P, Wenker J, Ruter S, Krause A (2017) Resour Conserv Recycl 117:235CrossRefGoogle Scholar
  6. 6.
    Vantsi O, Karki T (2015) Resour Conserv Recycl 104:38CrossRefGoogle Scholar
  7. 7.
    Brunazzi G, Parisi S, Pereno A (2014) The importance of packaging design for the chemistry of food products, Springer, New York, VI, p 119Google Scholar
  8. 8.
    Karlsson S (2004) Adv Polym Sci 169:201CrossRefGoogle Scholar
  9. 9.
    Mourad AL, Garcia EE, Vilela GB, von Zuben F (2008) Int J Life Cycle Assess 13:140CrossRefGoogle Scholar
  10. 10.
    Mourad AL, Garcia EE, Vilela GB, von Zuben F (2008) Resour Conserv Recycl 52:678CrossRefGoogle Scholar
  11. 11.
    Tetra Pak SA (2014) Accessed 10 Apr 2018
  12. 12.
    The National Institute of Statistics and Geography of Mexico (INEGI) (2015) Accessed 10 Apr 2018
  13. 13.
    Hakkarainen M, Alberstsson A (2004) Adv Polym Sci 169:177CrossRefGoogle Scholar
  14. 14.
    White J, Turnbull A (1994) J Mater Sci 29:584CrossRefGoogle Scholar
  15. 15.
    Schnabel W (1981) Polymer degradation principles and practical applications. Hanser Publishers, German Democratic RepublicGoogle Scholar
  16. 16.
    Allen NS, Edge M (1992) Fundamentals of polymer degradation and stabilization. Elsevier, LondonGoogle Scholar
  17. 17.
    Grassie N, Scott G (1992) Developments in polymer degradation, vol 1. Applied Science Publishers Ltd, London, p 205Google Scholar
  18. 18.
    Halim SH (2000) Handbook of polymer degradation, Marcel Dekker Inc., New York, p 461Google Scholar
  19. 19.
    Stark NM (2006) J Appl Poly Sci 100:3131CrossRefGoogle Scholar
  20. 20.
    Grüll G, Tscherne F, Spitaler I, Forsthuber B (2011) J Wood Prod 72:367CrossRefGoogle Scholar
  21. 21.
    Hidalgo M (2011) J Sci Ind Res 70:232Google Scholar
  22. 22.
    Bekhta P, Lyutyy P, Hiziroglu S, Ortynska G (2016) J Polym Environ 24:159CrossRefGoogle Scholar
  23. 23.
    Moya R, Camacho D, Mata J, Fallas RS (2013) J Biomater Nanobiotechnol 4:334CrossRefGoogle Scholar
  24. 24.
    Hidalgo M, Mina J, Herrera P (2013) J Compos Part B 55:345CrossRefGoogle Scholar
  25. 25.
    Murathan A, Murathan AS, Gürü M, Balbaşı M (2007) J Mater Des 28:2215CrossRefGoogle Scholar
  26. 26.
    Seeba M, Servens C, Pouyet J (1992) J Appl Polym Sci 45:1049CrossRefGoogle Scholar
  27. 27.
    Pool D (2013) Physico-mechanical characterization of agglomerates made of Tetra Brik with polyethylene matrix (in Spanish). BS degree, Instituto Tecnologico Superior Progreso, Progreso, Yucatan, MexicoGoogle Scholar
  28. 28.
    ASTM G151: Standard Practice for Exposing Nonmetallic Materials in Accelerated Test Devices that Use Laboratory Light SourcesGoogle Scholar
  29. 29.
    ASTM G154: Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Nonmetallic MaterialsGoogle Scholar
  30. 30.
    ASTM D4329: Standard Practice for Fluorescent Ultraviolet (UV) Lamp Apparatus Exposure of PlasticsGoogle Scholar
  31. 31.
    ASTM D6662: Standard Specification for Polyolefin-Based Plastic Lumber Decking BoardsGoogle Scholar
  32. 32.
    ASTM D1435: Standard Practice for Outdoor Weathering of PlasticsGoogle Scholar
  33. 33.
    ASTM D618: Standard Practice for Conditioning Plastics for TestingGoogle Scholar
  34. 34.
    ASTM D4933: Standard Guide for Moisture Conditioning of Wood and Wood-Based MaterialsGoogle Scholar
  35. 35.
    ASTM D1037: Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel MaterialsGoogle Scholar
  36. 36.
    ASTM D3418: Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry.Google Scholar
  37. 37.
    Fatuo J (1993) Handbook of polyolefins: morphology and crystallization in polyolefins. Marcel Dekker, New YokGoogle Scholar
  38. 38.
    Asensio RC, Moya MSA, de la Roja JM, Gómez M (2009) Anal Bioanal Chem 395:2081CrossRefGoogle Scholar
  39. 39.
    ASTM E1252: Standard Practice for General Techniques for Obtaining Infrared Spectra for Qualitative AnalysisGoogle Scholar
  40. 40.
    Blum M, John H (2011) Drug Test Anal 4:298CrossRefGoogle Scholar
  41. 41.
    Wang WH, Bu FH, Zhang ZM, Sui SJ, Wang QW (2010) J For Res 21:219CrossRefGoogle Scholar
  42. 42.
    Pizano (2015) Accessed 10 Apr 2018
  43. 43.
    Save Resources 2gether (2010) Accessed 10 Apr 2018
  44. 44.
  45. 45.
    Zhang ZM, Du H, Wang WH, Wang QW (2010) J For Res 21:59CrossRefGoogle Scholar
  46. 46.
    Fabiyi J, McDonald A, McIlroy D (2009) J Polym Environ 17:34CrossRefGoogle Scholar
  47. 47.
    Satoto R, Subowo WS, Yusiasih R, Takane Y, Watanabe Y, Hatakeyama T (1997) Polym Degrad Stab 56:275CrossRefGoogle Scholar
  48. 48.
    Conley R (1970) Thermal stability of polymers, vol 1. Marcel Dekker, New YorkGoogle Scholar
  49. 49.
    Suresh B, Maruthamuthu S, Khare A, Palanisamy N, Muralidharan VS, Ragunathan R, Pandiyaraj KN (2011) J Polym Res 18:2175CrossRefGoogle Scholar
  50. 50.
    Ojeda T, Freitas A, Birck K, Dalmolin E, Jacques R, Bento F, Camargo F (2011) Polym Degrad Stab 96:703CrossRefGoogle Scholar
  51. 51.
    Corrales T, Catalina F, Peinado C, Allen NS, Fontan E (2002) J Photochem Photobiol A 147:213CrossRefGoogle Scholar
  52. 52.
    Amin AR (2002) J Polym Environ 9:1566Google Scholar
  53. 53.
    Rabek J (1995) Polymer photodegradation: mechanisms and experimental methods. Chapman and Hall, London, p 56CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Unidad de Materiales, Centro de Investigación Científica de YucatánMéridaMexico
  2. 2.Sociedad Mexicana de Ciencia Y Tecnologia Aplicada a Residuos SolidosCalimayaMexico
  3. 3.CONACYT-Unidad de Materiales, Centro de Investigación Científica de YucatánMéridaMexico

Personalised recommendations