Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 11, pp 2428–2438 | Cite as

Synthesis of Melanin Mediated Silver Nanoparticles from Aeromonas sp. SNS Using Response Surface Methodology: Characterization with the Biomedical Applications and Photocatalytic Degradation of Brilliant Green

  • Swati T. Gurme
  • Chetan B. Aware
  • Shripad N. Surwase
  • Chetan S. Chavan
  • Jyoti P. JadhavEmail author
Original paper

Abstract

Melanin is ubiquitous in nature and has wide applications in cosmetics, agriculture, and medicine. The synthesized melanin from bacterium Aeromonas sp. SNS was further used as capping and reducing agents for synthesis of silver nanoparticles (AgNPs). The influence of the experimental parameters (AgNO3, melanin concentrations, and temperature) and their interactions on the nanoparticle synthesis was optimized using response surface methodology (RSM). The Central Composite Design (CCD) with three independent variables was optimized for the effective synthesis of AgNPs. The optimized synthesis of AgNPs was achieved at the shortest time of 14.12 h in the presence of 2.62 mM AgNO3, and 32.30 µg ml−1 melanin concentration at 54.86 °C temperature. The synthesized AgNPs were characterized by means of UV–visible spectroscopy, FTIR, SEM, TEM, and PSD respectively. The AgNPs exhibited excellent antimicrobial activity against human and food-related pathogens. These AgNPs also have strong antioxidant potential which was estimated by DPPH, DMPD and FRAP radical scavenging assays. The 92.62% photocatalytic degradation of 250 PPM brilliant green was observed in 120 min. The present finding accelerates the melanin associated AgNPs could be used in the cosmetic and pharmaceutical industries as well as in textile industries as they have superior antimicrobial, antioxidant, and photocatalytic activity.

Keywords

Antimicrobial Antioxidant Melanin Photocatalysis Response surface methodology Silver nanoparticles 

Notes

Acknowledgements

Prof. Jyoti P. Jadhav and all authors wish to thank Interdisciplinary Programmed for Life Sciences sponsored by Department of Biotechnology, Government of India, under DBT-IPLS program (IPLS-Reference No: BT/PR4572/INF/22/147/2012) for providing instrument facility. Miss Swati T. Gurme wishes to thank to UGC, New Delhi, India, for providing Senior Research Fellowship under the scheme (UGC BSR-SAP). Mr. Chetan B. Aware wish to thanks to IPLS program for providing Senior Research Fellowship. Mr. Chetan S. Chavan thanks to DBT, Government of India for providing doctoral research fellowship. The authors would like to thank Prof. Sangeeta Kale for giving access to lab facilities in DIAT, Pune-25.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10924_2019_1529_MOESM1_ESM.docx (113 kb)
Supplementary material 1 Fig. S1 Pictorial descriptions of zone of inhibition for (a) Bacillus subtilius, (b) Bacillus cerus, (c) E. coli, (d) Pseudomonas velgaris, (e) Salmonella typhimurium, (f) Staphylococcus aureus and (g) Aspergillus niger (DOCX 112 kb)

References

  1. 1.
    Surwase SN, Jadhav S, Phugare S, Jadhav JP (2012) 3 Biotech 3:187–194CrossRefGoogle Scholar
  2. 2.
    Zhang F, Kearns SL, Orr PJ, Benton MJ, Zhou Z, Johnson D et al (2010) Nature 463:1075–1078CrossRefGoogle Scholar
  3. 3.
    Wogelius RA, Manning PL, Barden HE, Edwards NP, Webb SM, Sellers WI et al (2011) Science 333:1622–1626CrossRefGoogle Scholar
  4. 4.
    Lindgren J, Uvdal P, Sjövall P, Nilsson DE, Engdahl A, Schultz BP, Thiel V (2012) Nat Commun 3:824CrossRefGoogle Scholar
  5. 5.
    Hung YC, Sava V, Hong MY, Huang GS (2004) Life Sci 74:2037–2047CrossRefGoogle Scholar
  6. 6.
    Vasanthabharathi V, Lakshminarayanan R, Jayalakshmi S (2011) Afr J Biotechnol 10:11224–11234CrossRefGoogle Scholar
  7. 7.
    Sivaperumal P, Kamala K, Rajaram R (2015) Nat Product Res 29:2117–2121CrossRefGoogle Scholar
  8. 8.
    Rózanowska M, Sarna T, Land EJ, Truscott TG (1999) Free Radic Biol Med 26:518–525CrossRefGoogle Scholar
  9. 9.
    Hung YC, Sava VM, Makan SY, Chen THJ, Hong MY, Huang GS (2002) Food Chem 78:233–240CrossRefGoogle Scholar
  10. 10.
    Roy S, Rhim JW (2019) Colloids Surf B 176:317–324CrossRefGoogle Scholar
  11. 11.
    Raman NM, Shah PH, Mohan M, Ramasamy S (2015) AMB Exp 5:72CrossRefGoogle Scholar
  12. 12.
    Zhang M, Xiao G, Thring RW, Chen W, Zhou H, Yang H (2015) Appl Biochem Biotechnol 176:253–266CrossRefGoogle Scholar
  13. 13.
    Zou Y, Hou X (2016) Food Sci Technol Camp 37:153–157CrossRefGoogle Scholar
  14. 14.
    Sun S, Zhang X, Sun S, Zhang L, Shan S, Zhu H (2016) Food Chem 190:801–807CrossRefGoogle Scholar
  15. 15.
    El-Batal AI, Al Tamie MS (2016) Der Pharm Lett 8:315–333Google Scholar
  16. 16.
    Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim SK (2013) Int J Biol Macromol 58:263–274CrossRefGoogle Scholar
  17. 17.
    Tarangini K, Mishra S (2014) Biotechnol Rep 4:139–146CrossRefGoogle Scholar
  18. 18.
    Drewnowska JM, Zambrzycka M, Kalska-Szostko B, Fiedoruk K, Swiecicka I (2015) PLoS ONE 3:150.  https://doi.org/10.1371/journal.pone.0125428 CrossRefGoogle Scholar
  19. 19.
    El-Naggar NEA, El-Ewasy SM (2017) Sci Rep 7:42129.  https://doi.org/10.1038/srep42129 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    El-Batal AI, El-Sayyad GS, El-Ghamery A, Gobara M (2017) J Clust Sci 28(3):1083–1112CrossRefGoogle Scholar
  21. 21.
    Jiang H, Liu NN, Liu GL, Chi Z, Wang JM, Zhang LL, Chi ZM (2016) Extremophiles 20:567–577CrossRefGoogle Scholar
  22. 22.
    Saleh H, Abdelrazak A, Elsayed AE, Osman Y (2018) J Biol Life Sci 9:24–38CrossRefGoogle Scholar
  23. 23.
    Alarfaj NA, El-Tohamy MF (2016) Luminescence 31:1194–1200CrossRefGoogle Scholar
  24. 24.
    Alim S, Vejayan J, Yusoff MM, Kafi AK (2018) Biosens Bioelectron 3:150.  https://doi.org/10.1016/j.bios.2018.08.051 CrossRefGoogle Scholar
  25. 25.
    Płaza G, Chojniak J, Ibrahim MB (2014) Int J Mol Sci 15:13720–13737CrossRefGoogle Scholar
  26. 26.
    Kiran GS, Dhasayan A, Lipton AN, Selvin J, Arasu MV, Al-Dhabi NA (2014) J Nanobiotechnol 12(1):18CrossRefGoogle Scholar
  27. 27.
    Apte M, Girme G, Bankar A, RaviKumar A, Zinjarde S (2013) J Nanobiotechnol 11:1–9CrossRefGoogle Scholar
  28. 28.
    Liopo A, Su R, Oraevsky AA (2015) Photoacoustics 3:35–43CrossRefGoogle Scholar
  29. 29.
    Monira MR, EL-Gebaly RH, Abou-Shady H, Amin DG (2015) Mol Cell Biochem 399:59–69CrossRefGoogle Scholar
  30. 30.
    Kim DJ, Ju KY, Lee JK (2012) Bull Korean Chem Soc 33(11):3788–3792CrossRefGoogle Scholar
  31. 31.
    Cos P, Vlietinck A, Berghe D, Maes L (2006) J Ethnopharm 106:290–302CrossRefGoogle Scholar
  32. 32.
    Brand-Williams W, Cuvelier ME, Berset C (1995) Lebensm Wiss Technol 28:25–30CrossRefGoogle Scholar
  33. 33.
    Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH (2006) J Food Compos Anal 19:669–675CrossRefGoogle Scholar
  34. 34.
    Fogliano V, Verde V, Randazzo G, Ritieni A (1999) J Agric Food Chem 47:1035–1040CrossRefGoogle Scholar
  35. 35.
    Benzie IF, Strain JJ (1996) Anal Biochem 239:70–76CrossRefGoogle Scholar
  36. 36.
    Patil S, Surwase S, Jadhav S, Jadhav J (2013) Biochem Eng J 74:36–45CrossRefGoogle Scholar
  37. 37.
    Naoya M, Tomohiro I, Watano S (2015) Nanomater Nanotechnol 5:13CrossRefGoogle Scholar
  38. 38.
    Apte M, Sambre D, Gaikawad S, Joshi S, Bankar A, Kumar AR, Zinjarde S (2013) AMB Express 3:32CrossRefGoogle Scholar
  39. 39.
    Apte M, Girme G, Nair R, Bankar A, Kumar AR, Zinjarde S (2013) Mater Lett 95:149–152CrossRefGoogle Scholar
  40. 40.
  41. 41.
    Patil S, Sistla S, Bapat V, Jadhav J (2018) Appl Biochem Microbiol 54:163–172CrossRefGoogle Scholar
  42. 42.
    Babu G, Gunasekaran P (2009) Colloids Surf B 74:191–195CrossRefGoogle Scholar
  43. 43.
    Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma V, Nevena T, Zboril R (2006) J Phys Chem B 110:16248–16253CrossRefGoogle Scholar
  44. 44.
    Bursal E, Köksal E (2011) Food Res Int 44:2217–2221CrossRefGoogle Scholar
  45. 45.
    Huang S, Pan Y, Gan D, Ouyang X, Tang S, Ekunwe SIN, Wang H (2011) Med Chem Res 20:475–481CrossRefGoogle Scholar
  46. 46.
    Tu YG, Sun YZ, Tian YG, Xie MY, Chen J (2009) Food Chem 114:1345–1350CrossRefGoogle Scholar
  47. 47.
    El-Naggar NEA, El-Ewasy SM (2017) Sci Rep 7:42129.  https://doi.org/10.1038/srep42129 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Zerrad A, Anissi J, Ghanam J, Sendide K, Mohammed EH (2014) J Biotechnol Lett 5:87–94Google Scholar
  49. 49.
    Kaur S, Sharma S, Umar A, Singh S, Mehta SK, Kansal SK (2017) Superlattices Microstruct 103:365–375CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Swati T. Gurme
    • 1
  • Chetan B. Aware
    • 1
  • Shripad N. Surwase
    • 1
  • Chetan S. Chavan
    • 2
  • Jyoti P. Jadhav
    • 1
    Email author
  1. 1.Department of BiotechnologyShivaji UniversityKolhapurIndia
  2. 2.Department of Bioscience and TechnologyDefense Institute of Advanced TechnologyPuneIndia

Personalised recommendations