Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 11, pp 2395–2407 | Cite as

Multidrug Core–Shell Bead: A System for Bacterial Infection Treatment in Fish

  • Anderson J. GomesEmail author
  • Odair A. Barbizan
  • Caroline C. Lessa
  • Tatiana A. Campos
  • Herick S. Muller
  • Vicente P. Martins
  • Claure N. Lunardi
Original paper
  • 34 Downloads

Abstract

This study was developed to improve the durability and bioavailability of polymer matrix containing the antibacterial agent’s bacitracin (BAC), berberine (BER) and sodium nitroprusside (SNP), an ionotropic gelation method was successfully applied to prepare alginate/chitosan core–shell beads. The structure and properties of different core–shell beads were characterized by scanning electron microscopy (SEM), zeta potential, Fourier transform infrared spectroscopy (FTIR), thermal analysis (DSC), swelling tests, bioadhesive assay, release kinetic profile and antibacterial/antibacteriostatic activity in bacterial model. The morphology of beads was investigated by SEM, display relatively spherical shape and revealed rough surface was also observed the appearance of cracks probably caused by partial collapsing of the polymer network during drying. The diameter means particle size observed was around 1.04 ± 0.13 mm, the particles showed a neutral value, around + 0.305 mV. Using UV–Vis technique was observed a high entrapment efficiency of compounds BAC, BER and SNP (> 95%) in the alginate/chitosan core–shell beads. As demonstrated, there is increase in the swelling degree in pH 6.2. The drug release profile showed a pH-dependent release kinetics. At pH 5.0 the most suitable kinetic model is Higuchi, at pH 6.2 a zero-order model is observed, while at pH 7.4 the Korsmeyer–Peppas model present a good fit. The presence of compounds on beads was confirmed using FTIR analyses, and the results indicated that there is no interaction between drugs and vehicle used in the formulation. We can consider after DSC analysis that beads containing BAC, BER and SNP are thermally more stable than separate formulations having the characteristics required for application at room temperature. The release system produced has physical characteristics that allow the storage of the drugs for long periods of time maintaining their chemical and pharmacological properties unchanged. The percentage of adhesion displayed value of 66%, that indicates the improvement in adherence time on the absorbing surfaces to improves drug bioavailability and effectiveness of compounds. In this study is displayed the additive effect between BAC, BER and SNP shown the potential application of compound combinations as an efficient, novel therapeutic tool for antibiotic-resistant bacterial infections. These results indicate that the proposed strategy improves drug bioavailability and effectiveness of compounds in the treatment of fish.

Keywords

Bacitracin Berberine Sodium nitroprusside Alginate/chitosan core–shell bead 

Notes

Acknowledgements

The authors acknowledge the financial support from the University of Brasilia, the Coordination for the Improvement of Higher Educational Personnel (CAPES code 001), the Federal District Research Foundation (FAPDF), the Scientific and Technological Development Foundation (FINATEC), program PIQ and the National Council for Scientific and Technological Development (CNPq). A.J.G. and C.N.L. conceived and designed the research. O.A.B (PhD student) and C.C.L (undergraduate student) carried out the experiments, worked on the characterization analyses and helped to write the article. A.J.G was responsible for helping in the characterization tests and for guiding the analyses of physico-chemical data. C.N.L. performed SEM assays. A.J.G. interpreted the results, T.A.C. and H.S.M. helped to perform the biological tests. V.P.M was responsible for support in the antimicrobial assays. O.A.B performed fish antimicrobial assays. A.J.G. and C.N.L wrote the manuscript. The authors declare no competing financial interests.

References

  1. 1.
    Kotob MH, Menanteau-Ledouble S, Kumar G, Abdelzaher M, El-Matbouli M (2016) Vet Res 47(1):98PubMedPubMedCentralGoogle Scholar
  2. 2.
    Cheung RCF, Wong JH, Pan WL, Chan YS, Yin CM, Dan XL, Wang HX, Fang EF, Lam SK, Ngai PHK, Xia LX, Liu F, Ye XY, Zhang GQ, Liu QH, Sha O, Lin P, Ki C, Bekhit AA, Bekhit AED, Wan DCC, Ye XJ, Xia J, Ng TB (2014) Appl Microbiol Biotechnol 98(8):3475–94PubMedPubMedCentralGoogle Scholar
  3. 3.
    Assefa A, Abunna F (2018) Vet Med Int 2018(5432):497Google Scholar
  4. 4.
    Costa P, Lobo JMS (2001) Eur J Pharm Sci 13(2):123–33Google Scholar
  5. 5.
    Mutoloki S, Munang’andu HM, Evensen O (2015) Front Immunol 6:519PubMedPubMedCentralGoogle Scholar
  6. 6.
    de Moraes FR, Santos DMS (2010) Qualidade da água e histopatologia de órgãos de peixes provenientes de criatórios do município de Itapecuru Mirim, MaranhãoGoogle Scholar
  7. 7.
    Carraschi SP, Cruz C, Neto JGM, Castro MP, Bortoluzzi NL (2011) GÃrio ACF. Arq Bras de Med Vet e Zootec 63:579–583Google Scholar
  8. 8.
    Ciesiolka J, Jezowska-Bojczuk M, Wrzesinski J, Stokowa-Soltys K, Nagaj J, Kasprowicz A, Blaszczyk L, Szczepanik W (2014) Biochim Biophys Acta 1840(6):1782–9PubMedGoogle Scholar
  9. 9.
    Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dolz H, Millanao A, Buschmann AH, Support NUGR (2013) Environ Microbiol 15(7):1917–42PubMedGoogle Scholar
  10. 10.
    Johnson BA, Anker H, Meleney FL (1945) Science 102(2650):376–377PubMedGoogle Scholar
  11. 11.
    Ming LJ, Epperson JD (2002) J Inorg Biochem 91(1):46–58PubMedGoogle Scholar
  12. 12.
    Hong W, Gao X, Qiu P, Yang J, Qiao M, Shi H, Zhang D, Tian C, Niu S, Liu M (2017) Int J Nanomed 12:4691Google Scholar
  13. 13.
    Venkateswerlu G (1981) J Biosci 3(1):1–5Google Scholar
  14. 14.
    Chen ZJ, Chen JX, Wu LK, Li BY, Tian YF, Min X, Huang ZP, Yu RA (2019) Biomed Environ Sci 32(1):1–10PubMedGoogle Scholar
  15. 15.
    Bahar M, Deng Y, Zhu X, He S, Pandharkar T, Drew ME, Navarro-Vazquez A, Anklin C, Gil RR, Doskotch RW, Werbovetz KA, Kinghorn AD (2011) Bioorg Med Chem Lett 21(9):2606–10PubMedGoogle Scholar
  16. 16.
    Bellmann R, Smuszkiewicz P (2017) Infection 45(6):737–779PubMedPubMedCentralGoogle Scholar
  17. 17.
    Bhattarai R, Dhandapani N, Shrestha A (2011) Chron Young Sci 2(4):192–196Google Scholar
  18. 18.
    Imenshahidi M, Hosseinzadeh H (2016) Phytother Res 30(11):1745–1764PubMedGoogle Scholar
  19. 19.
    Boateng JS, Ayensu I (2014) Drug Dev Ind Pharm 40(5):611–8PubMedGoogle Scholar
  20. 20.
    Bravo-Osuna I, Andres-Guerrero V, Arranz-Romera A, Esteban-Perez S, Molina-Martinez IT, Herrero-Vanrell R (2018) Adv Drug Deliv Rev 126:127–144PubMedGoogle Scholar
  21. 21.
    Caetano LA, Almeida AJ, Goncalves LMD (2016) Mar Drugs 14(5):90PubMedCentralGoogle Scholar
  22. 22.
    George M, Abraham TE (2006) J Control Release 114(1):1–14PubMedGoogle Scholar
  23. 23.
    Guo MQ, Hu X, Wang C, Ai L (2017) Polysaccharides: structure and solubility. In: Xu Z (ed) Solubility of polysaccharides. IntechOpen.  https://doi.org/10.5772/intechopen.71570 Google Scholar
  24. 24.
    Chourasia MK, Jain SK (2004) Drug Deliv 11(2):129–48PubMedGoogle Scholar
  25. 25.
    Smola M, Vandamme T, Sokolowski A (2008) Int J Nanomed 3(1):1–19Google Scholar
  26. 26.
    Zhang L, Sang Y, Feng J, Li Z, Zhao A (2016) J Drug Target 24(7):579–89PubMedGoogle Scholar
  27. 27.
    Pardakhty A, Ranjbar M, Moshafi MH, Abbasloo S (2018) J Clust Sci 29(6):1061–1068Google Scholar
  28. 28.
    Han S, Dwivedi P, Mangrio FA, Dwivedi M, Khatik R, Cohn DE, Si T, Xu RX (2019) Artif Cells Nanomed Biotechnol 47(1):957–967PubMedGoogle Scholar
  29. 29.
    Andersen T, Bleher S, Flaten GE, Tho I, Mattsson S, Skalko-Basnet N (2015) Mar Drugs 13(1):222–36PubMedPubMedCentralGoogle Scholar
  30. 30.
    Gomes AJ, Lunardi CN, Lunardi LO, Pitol DL, Machado AEH (2008) Micron 39(1):40–4PubMedGoogle Scholar
  31. 31.
    de Jesus Gomes A, Lunardi CN, Caetano FH, Lunardi LO, da Hora Machado AE (2006) Microsc Microanal 12(5):399–405Google Scholar
  32. 32.
    Souza CR, Oliveira HR, Pinheiro WM, Biswaro LS, Azevedo RB, Gomes AJ, Lunardi CN (2015) J Biomater Nanobiotechnol 6(01):53Google Scholar
  33. 33.
    Nagarwal RC, Ridhurkar DN, Pandit JK (2010) AAPS PharmSciTech 11(1):294–303PubMedPubMedCentralGoogle Scholar
  34. 34.
    Arefin P, Hasan I, Reza MS (2016) Springerplus 5(1):691PubMedPubMedCentralGoogle Scholar
  35. 35.
    Waterborg JH, Matthews HR (1984) Methods Mol Biol 1:1–3PubMedGoogle Scholar
  36. 36.
    Takka S, GÃŒrel A (2010) AAPS PharmSciTech 11(1):460–466PubMedPubMedCentralGoogle Scholar
  37. 37.
    Tahtat D, Mahlous M, Benamer S, Khodja AN, Oussedik-Oumehdi H, Laraba-Djebari F (2013) Int J Biol Macromol 58:160–8PubMedGoogle Scholar
  38. 38.
    Chavda H, Modhia I, Mehta A, Patel R, Patel C (2013) Biomed Res Int 2013(563):651Google Scholar
  39. 39.
    Campos J, Varas-Godoy M, Haidar ZS (2017) Nanomedicine (London) 12(5):473–490Google Scholar
  40. 40.
    Ramadas M, Paul W, Dileep KJ, Anitha Y, Sharma CP (2000) J Microencapsul 17(4):405–11PubMedGoogle Scholar
  41. 41.
    Yang H, Hua S, Wang W, Wang A (2011) Iran Polym J 20(6):479–490Google Scholar
  42. 42.
    Francis-Floyd R (2011) Mycobacterial infections of fish. Southern Regional Aquaculture Center, StonevilleGoogle Scholar
  43. 43.
    Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanomedicine 2(1):8–21PubMedGoogle Scholar
  44. 44.
    Gao X, Wang W, Wei S, Li WC (2009) Zhongguo Zhong Yao Za Zhi 34(21):2695–700PubMedGoogle Scholar
  45. 45.
    Snyder JD, Walker WA (1987) Int Arch Allergy Appl Immunol 82(3–4):351–6PubMedGoogle Scholar
  46. 46.
    Tomkiewicz D, Casadei G, Larkins-Ford J, Moy TI, Garner J, Bremner JB, Ausubel FM, Lewis K, Kelso MJ (2010) Antimicrob Agents Chemother 54(8):3219–3224PubMedPubMedCentralGoogle Scholar
  47. 47.
    Yong Y, Kai H, Bao-Shun Z, Xue-Gang LI (2014) Pharmacogn Mag 10(38):97PubMedPubMedCentralGoogle Scholar
  48. 48.
    Boberek JM, Stach J, Good L (2010) PloS ONE 5(10):e13,745Google Scholar
  49. 49.
    Wang Y, Kheir MM, Chai Y, Hu J, Xing D, Lei F, Du L (2011) PLoS ONE 6(8):e23,495Google Scholar
  50. 50.
    Sadrearhami Z, Nguyen TK, Namivandi-Zangeneh R, Jung K, Wong EH, Boyer C (2018) J Mater Chem B 6(19):2945–2959Google Scholar
  51. 51.
    Smith JN, Dasgupta TP (2001) J Inorg Biochem 87(3):165–173PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Photochemistry and Nanobiotechnology, Centro MetropolitanoUniversity of BrasiliaBrasiliaBrazil
  2. 2.Federal Institute of RondoniaColorado do OesteBrazil
  3. 3.Instituto de Instituto Ciências BiológicaUniversidade de BrasíliaBrasiliaBrazil

Personalised recommendations