Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 11, pp 2369–2379 | Cite as

Conductivity of PEO/PLA Doped Liquid Crystal Ionomer Solid Polymer Electrolyte in Mesomorphic Range

  • Meng Zhang
  • Ai-ling ZhangEmail author
  • Qiu Li
  • Fang-fang Li
  • Song Wang
  • San-xi Li
Original paper
  • 64 Downloads

Abstract

A novel polyethylene oxide (PEO)/polylactic acid (PLA) solid polymer electrolyte (SPE) doped with Liquid crystal ionomer (LCI) was prepared by automatic scraping membrane technology and the liquid crystal property of LCI was proposed as an effective strategy to improve the conductivity. The highest conductivity of the SPE with 0.5 wt% LCI achieve a value of 2.19 × 10−4 S/cm at 17 °C which is approximately four orders of magnitude higher than that of the original PEO solid polymer electrolyte, conductivity at room temperature is 10−7–10−8 S/cm. This is because the crystallinity is reduced by 25.3% compared to the pure PEO host. Differential Scanning Calorimetry (DSC) and polarizing microscope (POM) characterize the structure and properties of LCI. Electrochemical Impedance Spectroscopy (EIS) shows that the conductivity of the polymer electrolyte with 0.5 wt% LCI increased abruptly at 35 °C as the temperature is higher than Tg of LCI, reaching 6.37 × 10−4 S/cm which is 191% higher than that at 17 °C. There ionic conductivity has been improved extremely by continuous channel for efficient ion transportation, especially at the microtherm. And this change is greater at the elevated temperature regions, in line with the VTF equation. In summary, LCI’s liquid crystal performance can be used as an effective strategy to improve the low temperature conductivity of SPE.

Keywords

Solid polymer electrolyte Liquid crystal ionomer Sulfonate ion PEO/PLA blends Mesomorphic range Solubilizers 

Notes

Acknowledgements

Liaoning Provincial Key Laboratory for Polymer Catalytic Synthesis Technology (Document No.36 by DST, Liaoning Province [2010].); Advanced polymer materials engineering laboratory in liaoning province (2012.5). Additionally, the authors thank the School of Material Science and Engineering of Shenyang University of Technology for SEM measurement.

References

  1. 1.
    Liu B, Huang Y, Cao HJ, Zhao L, Huang YX, Song A, Lin YH, Wang MS, Li X (2018) A novel polyacrylonitrile-based porous structure gel polymer electrolyte composited by incorporating polyhedral oligomeric silsesquioxane by phase inversion method. J Solid State Electrochem 22:1771–1783CrossRefGoogle Scholar
  2. 2.
    Fan L, Wei SY, Li SY, Li Q, Lu YY (2018) Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv Energy Mater 8:1–31Google Scholar
  3. 3.
    Lupatini KI, Schaffer JV, Machado B, Silva ES, Ellendersen LSN, Muniz GIB, Ferracin RJ, Alves HJ (2018) Development of chitosan membranes as a potential PEMFC electrolyte. J Polym Environ 26:2964–2972CrossRefGoogle Scholar
  4. 4.
    Prabakaran P, Manimuthu RP, Gurusamy S (2017) Influence of barium titanate nanofiller on PEO/PVdF-HFP blend-based polymer electrolyte membrane for Li-battery applications. J Solid State Electrochem 21(5):1273–1285CrossRefGoogle Scholar
  5. 5.
    Mindemark J, Lacey MJ, Bowden T, Brandell D (2018) Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes. Prog Polym Sci 81:114–143CrossRefGoogle Scholar
  6. 6.
    Fenton DE, Parker JM, Wright PV (1973) Complexes of alkaline metai ions with poly(ethylene oxide). Polymer 14(4):589–594CrossRefGoogle Scholar
  7. 7.
    Feuillade G, Perche PH (1975) Ion-conductive macromolecular geis and membranes for solid lithium cells. J Appl Electrochem 5:63–69CrossRefGoogle Scholar
  8. 8.
    Jiang YX, Xu JM, Zhuang QC, Jin LY, Sun SG (2008) A novel PEO-based composite solid-state polymer electrolyte with methyl group-functionalized SBA-15 filler for rechargeable lithium batteries. J Solid State Electrochem 12(4):353–361CrossRefGoogle Scholar
  9. 9.
    Chen ZF, Jiang YX, Zhuang QC, Dong QF, Wang Y, Sun SG (2005) Preparation and characterization of a novel composite microporous polymer electrolyte for Li-ion batteries. Chin Sci Bull 50(14):1435–1440CrossRefGoogle Scholar
  10. 10.
    Manthiram A, Yu XW, Wang SF (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2(3):16103CrossRefGoogle Scholar
  11. 11.
    Liu W, Lee SW, Lin DC, Shi FF, Wang S, Sendek AD, Cui Y (2017) Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat Energy 2:1–7Google Scholar
  12. 12.
    Fahmi EM, Ahmad A, Rahman MYA, Hamzah H (2012) Effect of NiO nanofiller concentration on the properties of PEO-NiO-LiClO4 composite polymer electrolyte. J Solid State Electrochem 16:2487–2491CrossRefGoogle Scholar
  13. 13.
    Wang ZQ, Wang ZJ, Yang LY, Wang HB, Song YI, Han L, Yang K, Hu JT, Chen HB, Pan F (2018) Boosting interfacial Li+, transport with a MOF-based ionic conductor for solid-state batteries. Nano Energy 49:580–587CrossRefGoogle Scholar
  14. 14.
    Chandra A (2016) Hot-pressed PEO-PVP blended solid polymer electrolytes: ion transport and battery application. Polym Bull 73(10):1–12CrossRefGoogle Scholar
  15. 15.
    Polu Anji Reddy, Rhee Hee-Woo (2016) Effect of TiO2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO12–LiTDI solid polymer electrolyte. J Ind Eng Chem 37:347–353CrossRefGoogle Scholar
  16. 16.
    Devi GN, Chitra S, Selvasekarapandian S, Premalatha M, Monisha S, Saranya J (2017) Synthesis and characterization of dextrin-based polymer electrolytes for potential applications in energy storage devices. Ionics 23:3377–3388CrossRefGoogle Scholar
  17. 17.
    Siparsky GL, Voorhees KJ, Dorgan JR, Schilling K (1997) Water transport in polylactic acid (PLA), PLA/Polycaprolactone copolymers, and PLA/polyethylene glycol blends. J Polym Environ 5(3):125–136Google Scholar
  18. 18.
    Ferrarezi MMF, Taipina OM, Silva LCE, Goncalves MC (2013) Poly(Ethylene Glycol) as a compatibilizer for poly(lactic acid)/thermoplastic starch blends. J Polym Environ 21:151–159CrossRefGoogle Scholar
  19. 19.
    Wang HL, Shu LP, Jiang ST (2010) Preparation of poly(lactic acid)/poly(methyl methacrylate)/silicon dioxide degradable hybrid electrolytes. J Appl Polym Sci 117(5):2790–2794Google Scholar
  20. 20.
    Feng LD, Xiang S, Sun B, Yan-long Liu YL, Sun ZQ, Bian XC, Li G, Chen XS (2016) Thermal, morphological, mechanical and aging properties of polylactide blends with Poly(ether urethane) based on chain-extension reaction of poly(ethylene glycol) using diisocyanate. Chin J Polym Sci 34(9):1070–1078CrossRefGoogle Scholar
  21. 21.
    Zhang JM, Wang SW, Qiao YH, Li Q (2016) Effect of morphology designing on the structure and properties of PLA/PEG/ABS blends. Colloid Polym Sci 294:1779–1787CrossRefGoogle Scholar
  22. 22.
    Zare Y, Garmabi H, Rhee KY (2018) Structural and phase separation characterization of poly(lactic acid)/poly(ethylene oxide)/carbon nanotube nanocomposites by rheological examinations. Compos Part B 144:1–10CrossRefGoogle Scholar
  23. 23.
    Chieng BW, Ibrahim NA, Yunus WMW, Hussein MZ (2014) Poly(lactic acid)/Poly(ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymers 6:93–104CrossRefGoogle Scholar
  24. 24.
    Nazari T, Garmabi H (2016) Thermo-rheological and interfacial properties of polylactic acid/polyethylene glycol blends toward the melt electrospinning ability. J Appl Polym Sci 133:1–11CrossRefGoogle Scholar
  25. 25.
    Wang XD, Bai L, Tang XQ, Gao Y, Pan DF, He XZ, Meng FB (2018) Ionic liquid-crystalline network polymers formed by sulfonic acid-containing polysiloxanes and pyridinium compounds. Eur Polym J 1:1.  https://doi.org/10.1016/j.eurpolymj.2018.01.038 CrossRefGoogle Scholar
  26. 26.
    Zhang AL (2002) Main-chain liquid crystalline ionomer and composite materials Ph.D., Northeastern University, ChinaGoogle Scholar
  27. 27.
    Xu XY, Zhou ZL (2015) Morphology and mechanical properties of ternary polymer blends containing liquid crystalline ionomers with different ionic group. Appl Mech Mater 751:21–25CrossRefGoogle Scholar
  28. 28.
    Ito K, Naoko N, Ohno H (1997) High lithium ionic conductivity of poly (ethylene oxide)s having sulfonate groups on their chain ends. J Mater Chem 7(8):1357–1362CrossRefGoogle Scholar
  29. 29.
    Tong YF, Chen L, He XH, Chen YW (2013) Mesogen-controlled ion channel of star-shaped hard-soft block copolymers for solid-state lithium-ion battery. Polym Chem 51:4341–4350CrossRefGoogle Scholar
  30. 30.
    Tong YF, Chen L, He XH, Chen YW (2014) Sequential effect and enhanced conductivity of star-shaped diblock liquid-crystalline copolymers for solid electrolytes. J Power Sour 247(3):786–793CrossRefGoogle Scholar
  31. 31.
    Zhang AL, Cao FY, Na GZ, Wang S, Li SX, Liu JC (2016) A novel PEO-based blends solid polymer electrolytes doping liquid crystalline ionomers. Ionics 22(11):2103–2112CrossRefGoogle Scholar
  32. 32.
    Zhang N, Zhang AL, Liu QF, Zhang M, Li Q, Li FF (2018) Effect of liquid crystal ionomer intercalated montmorillonite nanocomposites on PEO/PLA solid polymer electrolytes. Ionics.  https://doi.org/10.1007/s11581-018-2519-1 CrossRefGoogle Scholar
  33. 33.
    Zhang B, Weiss RA (1992) Liquid crystalline lonomers: I: Main-chain liquid crystalline polymer containing pendant sulfonate groups. J Polym Sci Pol Chem 30(1):91–97CrossRefGoogle Scholar
  34. 34.
    Zhou Q (2017) Study on the electrical properties of polyepoxide (PEO) polymer electrolyte Master thesis, Shenyang University of Technology, ChinaGoogle Scholar
  35. 35.
    Yu T, Han Y, Guo QP, Wang H, Xie K (2016) Effect of lithium salt on electrochemical properties of LAGP-PEO solid composite electrolyte and solid state LiFePO4 lithium-ion battery. Energy Storage Sci Technol 5:735–744Google Scholar
  36. 36.
    Wieczorek W, Florjacyk Z, Stevens JR (1995) Composite polyether based solid electrolytes. Electrochim Acta 40(13–14):2251–2258CrossRefGoogle Scholar
  37. 37.
    Zhuang QC, Xu JM, Fan XY, Wei GZ, Dong QF, Jiang YX (2007) LiCoO2 electrode/electrolyte interface of Li-ion batteries investigated by electrochemical impedance spectroscopy. Sci China Ser B 50(6):776–783CrossRefGoogle Scholar
  38. 38.
    Ghelichi M, Qazvini NT, Jafari SH, Khonakdar HA, Farajollahi Y, Scheffler C (2013) Conformational, thermal, and ionic conductivity behavior of PEO in PEO/PMMA miscible blend: investigating the effect of lithium salt. J Appl Polym Sci 129(4):1868–1874CrossRefGoogle Scholar
  39. 39.
    Tiyapiboonchaiya C, Pringle JM, Sun J, Byrne N, Howlett PC, Macfarlane DR, Forsyth M (2004) The zwitterion effect in high-conductivity polyelectrolyte materials. Nat Mater 3(1):29–32PubMedCrossRefGoogle Scholar
  40. 40.
    Karan S, Sahu TB, Sahu M, Mahipal YK, Agrawal RC (2017) Characterization of ion transport property in hot-press cast solid polymer electrolyte (SPE) films: [PEO: Zn(CF3SO3)2]. Ionics 23:2721–2726CrossRefGoogle Scholar
  41. 41.
    Atasiei R, Raicopol M, Andronescu C, Hanganu A, Alexe-Ionescu AL, Barbero G (2018) Investigation of the conduction properties of ionic liquid crystal electrolyte used in dye sensitized solar cells. J Mol Liq.  https://doi.org/10.1016/j.molliq.2018.01.010 CrossRefGoogle Scholar
  42. 42.
    Dhatarwal P, Sengwa RJ (2018) Influence of solid polymer electrolyte preparation methods on the performance of (PEO-PMMA)-LiBF4, films for lithium-ion battery applications. Polym Bull.  https://doi.org/10.1007/s00289-018-2354-6 CrossRefGoogle Scholar
  43. 43.
    Klongkan S, Pumchusak J (2015) Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO–LiCF3SO3, solid polymer electrolyte. Electrochim Acta 161:171–176CrossRefGoogle Scholar
  44. 44.
    Dias FB, Batty SV, Ungar G, Voss JP, Wright PV (1996) Ionic conduction of lithium and magnesium salts within laminar arrays in a smectic liquid-crystal polymer electrolyte. J Chem Soc Faraday Trans 92(14):2599–2606CrossRefGoogle Scholar
  45. 45.
    Sun C, Liu J, Gong Y, Wilkinson DP, Zhang JJ (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386CrossRefGoogle Scholar
  46. 46.
    Zhang AL, Zhang BY, Feng ZL (2002) Compatibilization by main-chain thermotropic liquid crystalline ionomer of blends of PBT/PP. J Appl Polym Sci 85(5):1110–1117CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Meng Zhang
    • 1
  • Ai-ling Zhang
    • 1
    Email author
  • Qiu Li
    • 1
  • Fang-fang Li
    • 1
  • Song Wang
    • 1
  • San-xi Li
    • 1
  1. 1.College of ScienceShenyang University of TechnologyLiaoningChina

Personalised recommendations