Advertisement

Formulation of Green Particulate Composites from PLA and PBS Matrix and Wastes Deriving from the Coffee Production

  • Grazia Totaro
  • Laura SistiEmail author
  • Maurizio Fiorini
  • Isabella Lancellotti
  • Fernanda N. Andreola
  • Andrea Saccani
Original paper

Abstract

Particulate composites based on poly(lactic acid) and poly(butylene succinate) biopolymers have been formulated. Silver skin, the by-product derived from the roasting of coffee beans, has been used as a filler up to a 30 wt% of loading. The microstructure, crystallinity, thermal stability, mechanical properties and water absorption of the derived composites have been investigated. Data so far collected underline that a trade-off of the mechanical properties can be obtained by adding the filler, while the overall amount of crystallinity remains constant. Up to the highest filler content, moisture uptake follows a Fichian behaviour while the value of the contact angle is slightly increased by modification. Thus, silver skin, which actually is used for fuel or soil fertilization, finds here a different environmentally friendly valorization into the field of biocomposites.

Keywords

PLA PBS Green composite Agro-waste Coffee production 

Notes

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Thanks are due to Cagliari spa (Modena, Italy) for supplying silver skins.

References

  1. 1.
    Koutrotsios G, Kalogeropoulos N, Kaliora AC (2018) J Agric Food Chem 66(24):5971CrossRefGoogle Scholar
  2. 2.
    Haas ID, Toaldo IM, Burin VM, Bordignon-Luiz MT (2018) Ind Crops Prod 112:593CrossRefGoogle Scholar
  3. 3.
    Pinela J, Prieto MA, Barreiro MF (2017) Innovative Food Sci Emerg Technol 41:160CrossRefGoogle Scholar
  4. 4.
    Iyer KA, Zhang L, Torkelson JM (2016) ACS Sustain Chem Eng 4:881CrossRefGoogle Scholar
  5. 5.
    Kaya N, Atagur M, Akyu O, Seki Y, Sarikanat M, Sutcu M, Seydibeyoglu MO, Sever M (2018) Composites Part B 150:277CrossRefGoogle Scholar
  6. 6.
    Lanjewar SR, Bari PS, Hansora DP (2018) Sci Eng Comp Mater 25:373CrossRefGoogle Scholar
  7. 7.
    Mousa A, Heinrich G, Gohs U, Hassler R (2009) Polym Plast Technol Eng 4:1030CrossRefGoogle Scholar
  8. 8.
    Mishra S, Verma J (2006) J Appl Polym Sci 101:2530CrossRefGoogle Scholar
  9. 9.
    Mishra S, Naik JB (2005) Polym Plast Technol Eng 44:511CrossRefGoogle Scholar
  10. 10.
    Chun KS, Yeng CM, Hussiensyah S (2018) Polym Comp 39:2441CrossRefGoogle Scholar
  11. 11.
    Murariu M, Dubois P (2016) Adv Drug Delivery Rev 107:17CrossRefGoogle Scholar
  12. 12.
    Saccani A, Sisti L, Manzi S, Fiorini M (2019) Polym Comp 40:1378CrossRefGoogle Scholar
  13. 13.
    Quiles-Carrillo L, Montanes N, Lagaron MJ (2018) Polym Int 67:1341CrossRefGoogle Scholar
  14. 14.
    Spiridon I, Leluk K, Resmerita AM, Darie RN (2015) Composites Part B 69:342CrossRefGoogle Scholar
  15. 15.
    Liao H, Wu C (2012) J Polym Eng 32:435Google Scholar
  16. 16.
    Le Guen M, Thoury-Monbrun V, Castellano Rolda JM, Hill SJ (2017) J Polym Environ 25:419CrossRefGoogle Scholar
  17. 17.
    Essabira H, Bensalah MO, Rodrigue D, Bouhfid R, Qaiss A (2016) Carbohydr Polym 143:70CrossRefGoogle Scholar
  18. 18.
    Quiles-Carrillo L, Montanes N, Garcia-Garcia D (2018) Composites Part B 147:76CrossRefGoogle Scholar
  19. 19.
    Frollini E, Bartolucci N, Sisti L, Celli A (2015) Polym Test 45:168CrossRefGoogle Scholar
  20. 20.
    Sisti L, Totaro G, Vannini M, Fabbri P, Kalia S, Zatta A, Celli A (2016) Ind Crops Prod 81:56CrossRefGoogle Scholar
  21. 21.
    Sisti L, Totaro G, Marchese P (2016) In: Kalia S, Averous L (eds) Biodegradable and biobased polymers for environmental and biomedical application. Wiley, Beverly, p 225CrossRefGoogle Scholar
  22. 22.
    Sisti L, Kalia S, Totaro G, Vannini M, Negroni A, Zanaroli G, Celli A (2018) J Environ Chem Eng 6(4):4452CrossRefGoogle Scholar
  23. 23.
    Totaro G, Sisti L, Vannini M, Marchese P, Tassoni A, Lenucci MS, Lamborghini M, Kalia S, Celli A (2018) Composites Part B 139:195CrossRefGoogle Scholar
  24. 24.
    Thakur K, Kalia S, Kaith BS, Pathania D, Kumar A, Thakur P, Knittel CE, Schauer CL, Totaro G (2016) J Environ Chem Eng 4:1743CrossRefGoogle Scholar
  25. 25.
    Pujol D, Liu C, Gominho J, Olivella MA, Fiol N, Villaescusa I, Pereira H (2013) Ind Crops Prod 50:423CrossRefGoogle Scholar
  26. 26.
    Esquivel P, Jiménez VM (2012) Food Res Int 46:488CrossRefGoogle Scholar
  27. 27.
    Regazzoni L, Saligari F, Marinello C (2016) J Funct Foods 20:472CrossRefGoogle Scholar
  28. 28.
    Murthy M, Pushpa S, Naidu M (2012) Food Bioprocess Technol 5:897CrossRefGoogle Scholar
  29. 29.
    Janissen B, Huynh T (2018) Resour Conserv Recycl 128:110CrossRefGoogle Scholar
  30. 30.
    Pushpa S, Murthy M, Naidu M (2012) Resour Conserv Recycl 66:45CrossRefGoogle Scholar
  31. 31.
    Baek B, Park J, Lee B, Kim HJ (2013) J Polym Environ 21:702CrossRefGoogle Scholar
  32. 32.
    Wu C (2015) Polym Degrad Stab 121:51CrossRefGoogle Scholar
  33. 33.
    Cacciotti I, Mori S, Cherubini V, Nanni F (2018) Int J Biol Macromol 112:567CrossRefGoogle Scholar
  34. 34.
    Reis KC, Pereira L, Melo NIC, Marconcini A, Trugilho JM, Tonoli PF (2015) Mater Res 18(3):546CrossRefGoogle Scholar
  35. 35.
    Murthy PS, Naidu MM (2012) Resour Conserv Recycl 66:45CrossRefGoogle Scholar
  36. 36.
    Oliveira M, Mota C, Abreu AS, Nobrega JM (2015) J Polym Eng 35:401CrossRefGoogle Scholar
  37. 37.
    Sarasini F, Tirillo J, Zuorro A, Maffei G, Lavecchia R, Puglia D, Dominici F, Luzi F, Valente T, Torre L (2018) Ind Crops Prod 118:311CrossRefGoogle Scholar
  38. 38.
    Sung SH, Chang Y, Han J (2017) Carbohydr Polym 169:495CrossRefGoogle Scholar
  39. 39.
    Pyda M, Bopp RC, Wunderlich B (2004) J Chem Thermodyn 36:731CrossRefGoogle Scholar
  40. 40.
    Liang ZC, Pan PJ, Zhu B, Dong T, Inoue Y (2010) J Appl Pol Sci 115:3559CrossRefGoogle Scholar
  41. 41.
    Imane K, Hamid S (2018) Ind Crops Prod 124:787CrossRefGoogle Scholar
  42. 42.
    Ballesteros LF, Teixeira JA, Mussatto SI (2014) Food Bioprocess Technol 7:3493CrossRefGoogle Scholar
  43. 43.
    Alghooneh A, Amini AM, Behrouzian F, Razav SMA (2017) Int J Food Prop 20:2830CrossRefGoogle Scholar
  44. 44.
    Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) Mater Des 47:424CrossRefGoogle Scholar
  45. 45.
    Moustafa H, Guizani C, Dupont C, Martin V, Jeguirim M, Dufresne A (2017) ACS Sustain Chem Eng 5:1906CrossRefGoogle Scholar
  46. 46.
    Sisti L, Belcari J, Mazzocchetti L, Totaro G, Vannini M, Giorgini L, Zucchelli A, Celli A (2016) Polym Test 50:283CrossRefGoogle Scholar
  47. 47.
    Jiang N, Yu T, Li Y (2018) J Polym Evinron 26:3176CrossRefGoogle Scholar
  48. 48.
    Wan Lu, Shuai Zhou, Yanhua Zhang (2019) Int J Biol Macromol 125:1093CrossRefGoogle Scholar
  49. 49.
    Araújo RS, Marques MFV, de Oliveira PF, Rezende CC (2018) J Polym Environ 26:3785CrossRefGoogle Scholar
  50. 50.
    Loureiro NC, Esteves JL, Viana JC, Ghosh S (2014) Composites Part B 60:603CrossRefGoogle Scholar
  51. 51.
    Khanlou HM, Woodfield P, Summerscales J, Francucci G, King B, Talebian S, Foroughi G, Hall W (2018) Measurement 116:367CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaBolognaItaly
  2. 2.Department of Engineering “Enzo Ferrari”University of Modena and Reggio EmiliaModenaItaly

Personalised recommendations