Advertisement

Rheology, Mechanical Properties and Morphology of Poly(lactic acid)/Ethylene Vinyl Acetate Blends

  • Pankaj AgrawalEmail author
  • Aylanna P. M. Araújo
  • Jéssica C. C. Lima
  • Shirley N. Cavalcanti
  • Daniel M. G. Freitas
  • Giselly M. G. Farias
  • Marcelo M. Ueki
  • Tomás J. A. Mélo
Original paper
  • 7 Downloads

Abstract

In this work, the effect of ethylene vinyl acetate (EVA) content on the rheology, mechanical properties, and morphology of poly (lactic acid) (PLA)/EVA blends was investigated. Differential Scanning Calorimetry (DSC) showed that the addition of EVA to PLA decreased the degree of crystallinity of PLA. Dynamic Mechanical Thermal Analysis (DMTA) results showed that the presence of EVA copolymer increased the cold crystallization temperature (Tcc) of PLA. The addition of 10% of EVA to PLA substantially increased the impact strength. Morphology analysis by Scanning Electron Microscopy (SEM) indicated the immiscibility between PLA and EVA phases and an in increase the EVA average dispersed phase domains size with the increase in EVA content. Rheological measurements under oscillatory shear flow showed that storage modulus (G′) increased with the increase in the EVA content at low frequencies and is related to the increase in the EVA dispersed phase domains size, as also observed by relaxation spectrum analysis. Cole–Cole plots of imaginary viscosity (η″) versus real viscosity (η′) and Han plots of storage modulus (G′) versus loss modulus (G″) indicated that PLA and EVA phases are immiscible, as also observed by SEM.

Keywords

Poly(lactic acid) EVA Polymer blends Rheology Morphology 

Notes

Acknowledgements

The authors thank CAPES and CNPq for financial support.

References

  1. 1.
    Foruzanmehr M, Vuillaume PY, Elkoun S, Robert M (2016) Mater Des 106:295CrossRefGoogle Scholar
  2. 2.
    Lee JY, Kwon SH, Chin I-J, Choi HJ (2019) Polym BullGoogle Scholar
  3. 3.
    Sangeetha VH, Deka H, Varghese TO, Nayak SK (2018) Polym Compos 39:81CrossRefGoogle Scholar
  4. 4.
    Meng X, Bocharova V, Tekinalp H, Cheng S, Kisliuk A, Sokolov AP, Kunc V, Peter WH, Ozcan S (2018) Mater Des 139:188CrossRefGoogle Scholar
  5. 5.
    Iwata T (2015) Angew Chem Int Ed Engl 54:3210CrossRefGoogle Scholar
  6. 6.
    Nakajima H, Dijkstra P, Loos K (2017) Polymers 9:1CrossRefGoogle Scholar
  7. 7.
    Imre B, Pukánszky B (2013) Eur Polym J 49:1215CrossRefGoogle Scholar
  8. 8.
    Webb H, Arnott J, Crawford R, Ivanova E (2012) Polymers 5:1CrossRefGoogle Scholar
  9. 9.
    Satti SM, Shah AA, Marsh TL, Auras R (2018) J Polym Environ 26:3848CrossRefGoogle Scholar
  10. 10.
    Jalali A, Huneault MA, Elkoun S (2016) J Mater Sci 51:7768CrossRefGoogle Scholar
  11. 11.
    Lim LT, Auras R, Rubino M (2008) Prog Polym Sci 33:820CrossRefGoogle Scholar
  12. 12.
    Chow WS, Teoh EL, Karger-Kocsis J (2018) Express Polym Lett 12:396CrossRefGoogle Scholar
  13. 13.
    Jing M, Sui G, Zhao J, Zhang Q, Fu Q (2019) Compos Part A 117:219CrossRefGoogle Scholar
  14. 14.
    Kakroodi AR, Kazemi Y, Nofar M, Park CB (2017) Chem Eng J 308:772CrossRefGoogle Scholar
  15. 15.
    Chuayjuljit S, Wongwaiwattanakul C, Chaiwutthinan P, Prasassarakich P (2017) Polym Compos 38:2841CrossRefGoogle Scholar
  16. 16.
    Brito GF, Agrawal P, Araújo EM, Mélo TJA (2012) Polímeros 22:427CrossRefGoogle Scholar
  17. 17.
    Gug J, Sobkowicz MJ (2016) J Appl Polym Sci 133:43350CrossRefGoogle Scholar
  18. 18.
    Zhao H, Zhao G (2016) J Mech Behav Biomed Mater 53:59CrossRefGoogle Scholar
  19. 19.
    Wang S, Pang S, Xu N, Pan L, Lin Q (2016) J Appl Polym Sci 133:43424Google Scholar
  20. 20.
    de Araújo JP, Silva RC, Lima JCC, Agrawal P, de Mélo TJA (2016) Macromol Symp 367:82CrossRefGoogle Scholar
  21. 21.
    Zhang N, Wang Q, Ren J, Wang L (2008) J Mater Sci 44:250CrossRefGoogle Scholar
  22. 22.
    D’Amico DA, Iglesias Montes ML, Manfredi LB, Cyras VP (2016) Polym Test 49:22CrossRefGoogle Scholar
  23. 23.
    Gerard T, Budtova T (2012) Eur Polym J 48:1110CrossRefGoogle Scholar
  24. 24.
    Fortelný I, Ostafińska A, Michálková D, Jůza J, Mikešová J, Šlouf M (2015) Polym Bull 72:2931CrossRefGoogle Scholar
  25. 25.
    Luyt AS, Gasmi S (2016) J Mater Sci 51:4670CrossRefGoogle Scholar
  26. 26.
    Liu Y, Cao K, Karpova S, Olkhov A, Filatova A, Zhulkina A, Burkov A, Fomin SV, Rosa DS, Iordanskii AL (2018) Macromol Symp 381:1800130CrossRefGoogle Scholar
  27. 27.
    Aghjeh MR, Nazari M, Khonakdar HA, Jafari SH, Wagenknecht U, Heinrich G (2015) Mater Des 88:1277CrossRefGoogle Scholar
  28. 28.
    Sangeetha VH, Valapa RB, Nayak SK, Varghese TO (2018) J Polym Environ 26:1CrossRefGoogle Scholar
  29. 29.
    Moura I, Botelho G, Machado AV (2013) J Polym Environ 22:148CrossRefGoogle Scholar
  30. 30.
    Singla RK, Zafar MT, Maiti SN, Ghosh AK (2017) Polym Test 63:398CrossRefGoogle Scholar
  31. 31.
    Ma P, Hristova-Bogaerds DG, Goossens JGP, Spoelstra AB, Zhang Y, Lemstra PJ (2012) Eur Polym J 48:146CrossRefGoogle Scholar
  32. 32.
    Srithep Y, Nealey P, Turng L-S (2013) Polym Eng Sci 53:580CrossRefGoogle Scholar
  33. 33.
    Faker M, Razavi Aghjeh MK, Ghaffari M, Seyyedi SA (2008) Eur Polym J 44:1834CrossRefGoogle Scholar
  34. 34.
    John B, Varughese KT, Oommen Z, Thomas S (2010) Polym Eng Sci 50:665CrossRefGoogle Scholar
  35. 35.
    Mohapatra AK, Mohanty S, Nayak SK (2012) Polym Compos 33:2095CrossRefGoogle Scholar
  36. 36.
    Aghjeh MR, Asadi V, Mehdijabbar P, Khonakdar HA, Jafari SH (2016) Compos Part B 86:273CrossRefGoogle Scholar
  37. 37.
    Sundararaj U, Macosko CW (1995) Macromolecules 28:2647CrossRefGoogle Scholar
  38. 38.
    Yee M, Calvão PS, Demarquette NR (2007) Rheol Acta 46:653CrossRefGoogle Scholar
  39. 39.
    Calvão PS, Yee M, Demarquette NR (2005) Polymer 46:2610CrossRefGoogle Scholar
  40. 40.
    Wu D, Zhang Y, Zhang M, Zhou W (2008) Eur Polym J 44:2171CrossRefGoogle Scholar
  41. 41.
    Dealy JM, Wang J (2013) Melt rheology and its applications in the plastics industry engineering materials and processes, 2nd edn. Springer, NetherlandsCrossRefGoogle Scholar
  42. 42.
    Wu D, Zhang Y, Yuan L, Zhang M, Zhou W (2010) J Polym Sci Part B 48:756CrossRefGoogle Scholar
  43. 43.
    Chen Y, Zou H, Liang M, Liu P (2013) J Appl Polym Sci 129:945CrossRefGoogle Scholar
  44. 44.
    Shen G, Shen H, Xie B, Yang W, Yang M (2013) J Appl Polym Sci 129:2103CrossRefGoogle Scholar
  45. 45.
    Kwon MK, Cho KS (2016) Korea-Aust Rheol J 28:23CrossRefGoogle Scholar
  46. 46.
    Lacroix C, Aressy M, Carreau PJ (1997) Rheol Acta 36:416CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Pankaj Agrawal
    • 1
    Email author
  • Aylanna P. M. Araújo
    • 1
  • Jéssica C. C. Lima
    • 1
  • Shirley N. Cavalcanti
    • 1
  • Daniel M. G. Freitas
    • 1
  • Giselly M. G. Farias
    • 1
  • Marcelo M. Ueki
    • 2
  • Tomás J. A. Mélo
    • 1
  1. 1.Departamento de Engenharia de MateriaisUniversidade Federal de Campina GrandeCampina GrandeBrazil
  2. 2.Departamento de Engenharia de MateriaisUniversidade Federal de SergipeSão CristóvãoBrazil

Personalised recommendations