Effect Analysis of Nickel Ferrite (NiFe2O4) and Titanium Dioxide (TiO2) Nanoparticles on CH4/CO2 Gas Permeation Properties of Cellulose Acetate Based Mixed Matrix Membranes

  • Iqra Shakeel
  • Arshad Hussain
  • Sarah FarrukhEmail author
Original Paper


Natural gas processing is very important industrial process. Major component of natural gas is methane, which is an increasingly utilized source of energy due to high thermal efficiency, while carbon dioxide act as an impurity and reduces its calorific value. In this research work, effects of nickel ferrite (NiFe2O4) and titanium dioxide (TiO2) nanoparticles on the permeation properties of carbon dioxide (CO2) and methane (CH4) in cellulose acetate/polyethylene glycol (CA/PEG) membranes have been investigated. CA/PEG and CA/PEG based mixed matrix membranes (MMMs) are fabricated by using the solution casting method. Concentrations of TiO2 and NiFe2O4 nanoparticles membranes are varied from 0 to 20 and 0 to 2 wt% respectively. Scanning electron microscope, tensile testing analysis, X-ray diffraction and thermal gravimetric analysis are used to characterize the fabricated membranes. Permeation study of these membranes has shown that in 5 wt%TiO2 MMMs, the permeability of CO2 and CH4 is increased up to 5.75 and 3.75 times as compared to pure polymer. By adding 1.5 wt% NiFe2O4 in the polymer matrix, the permeability of CO2 and CH4 has improved up to 3.46 and 2.1 times as compared to pure polymer. It has been observed that the addition of inorganic nanoparticles in a polymer matrix helps to enhance the permeability of gases but it has little effect on CH4/CO2 selectivity.


Cellulose acetate Titanium dioxide nanoparticles Nickel ferrite nanoparticles CH4 separation Mixed matrix membranes 



We acknowledge the support of School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST). The authors also wish to acknowledge the Associate Professor Dr. Iftikhar Hussain Gul (NUST) for providing NiFe2O4 nanoparticles to conduct this research work.


  1. 1.
    Bernardo P, Clarizia G (2013) 30 Years of membrane technology for gas separation. In: Icheap-11: 11th international conference on chemical process engineering, parts 1–4, vol 32, pp 1999–2004.
  2. 2.
    Thirugnanasambandam M, Iniyan S, Goic R (2010) A review of solar thermal technologies. Renew Sustain Energy Rev 14:312–322. CrossRefGoogle Scholar
  3. 3.
    Adewole JK, Ahmad AL, Ismail S, Leo CP (2013) Current challenges in membrane separation of CO2 from natural gas: a review. Int J Greenh Gas Control 17:46–65. CrossRefGoogle Scholar
  4. 4.
    Shehu H, Okon E et al (2016) Study of the selectivity of methane over carbon dioxide using composite inorganic membranes for natural gas processing. J Adv Chem Eng. Google Scholar
  5. 5.
    Mahdi S, Afsari M, Asghari M (2017) Effect of nano zinc oxide on gas permeation through mixed matrix poly (amide-6-b-ethylene oxide)-based membranes. Int J Nano Dimens 8:31–39. Google Scholar
  6. 6.
    Najafi M, Sadeghi M, Bolverdi A et al (2017) Gas permeation properties of cellulose acetate/silica nanocomposite membrane. Adv Polym Technol. Google Scholar
  7. 7.
    Kwon Y, Im H, Kim J (2011) Effect of PMMA-graft-silica nanoparticles on the gas permeation properties of hexafluoroisopropylidene-based polyimide membranes. Sep Purif Technol 78:281–289. CrossRefGoogle Scholar
  8. 8.
    Ahn J, Chung WJ, Pinnau I, Guiver MD (2008) Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J Membr Sci 314:123–133. CrossRefGoogle Scholar
  9. 9.
    Momeni SM, Pakizeh M (2013) Preparation, characterization and gas permeation study of PSf/MgO nanocomposite membrane. Braz J Chem Eng 30:589–597. CrossRefGoogle Scholar
  10. 10.
    Sadeghi M, Afarani HT, Tarashi Z (2014) Preparation and investigation of the gas separation properties of polyurethane–TiO2 nanocomposite membranes. Korean J Chem Eng 32:97–103. CrossRefGoogle Scholar
  11. 11.
    Jian P, Yahui H, Yang W, Linlin L (2006) Preparation of polysulfone–Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field. J Membr Sci 284:9–16. CrossRefGoogle Scholar
  12. 12.
    Murali RS, Sridhar S, Sankarshana T, Ravikumar YVL (2010) Gas permeation behavior of PEBAX-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Ind Eng Chem Res 49:6530–6538. CrossRefGoogle Scholar
  13. 13.
    Nafisi V, Hägg MB (2014) Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. J Membr Sci 459:244–255. CrossRefGoogle Scholar
  14. 14.
    Moghadam F, Omidkhah MR, Vasheghani-Farahani E et al (2011) The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Sep Purif Technol 77:128–136. CrossRefGoogle Scholar
  15. 15.
    Ahmad J, Deshmukh K, Habib M, Hägg MB (2014) Influence of TiO2 nanoparticles on the morphological, thermal and solution properties of PVA/TiO2 nanocomposite membranes. Arab J Sci Eng 39:6805–6814. CrossRefGoogle Scholar
  16. 16.
    Vijay YK, Kulshrestha V, Awasthi K et al (2006) Characterization of nanocomposite polymeric membrane. 1–4.
  17. 17.
    Matteucci S, Kusuma VA, Swinnea S, Freeman BD (2008) Gas permeability, solubility and diffusivity in 1,2-polybutadiene containing brookite nanoparticles. Polymer (Guildf) 49:757–773. CrossRefGoogle Scholar
  18. 18.
    Matteucci S, Kusuma VA, Sanders D et al (2008) Gas transport in TiO2 nanoparticle-filled poly(1-trimethylsilyl-1-propyne). J Membr Sci 307:196–217. CrossRefGoogle Scholar
  19. 19.
    Amooghin AE, Sanaeepur H, Pedram MZ et al (2016) New advances in polymeric membranes for CO2 separation. In: Méndez-Vilas A, Solano A (eds) Polymer science: research advances, practical applications and educational aspects, pp 354–368Google Scholar
  20. 20.
    Raza A, Farrukh S, Hussain A (2017) Synthesis, characterization and NH3/N2 gas permeation study of nanocomposite membranes. J Polym Environ 25:46–55. CrossRefGoogle Scholar
  21. 21.
    Hauser AW, Schwerdtfeger P (2012) Methane-selective nanoporous graphene membranes for gas purification.
  22. 22.
    Wang S-D, Ma Q, Liu H et al (2015) Robust electrospinning cellulose acetate@TiO2 ultrafine fibers for dyeing water treatment by photocatalytic reactions. RSC Adv 5:40521–40530. CrossRefGoogle Scholar
  23. 23.
    Theivasanthi T, Alagar M (2013) Titanium dioxide (TiO2) nanoparticles XRD analyses: an insight. arXiv:1307.1091Google Scholar
  24. 24.
    Das C, Gebru KA (2017) Cellulose acetate modified titanium dioxide (TiO2) nanoparticles electrospun composite membranes: fabrication and characterization. J Inst Eng E. Google Scholar
  25. 25.
    Qadir D, Mukhtar H, Keong LK (2016) Synthesis and characterization of polyethersulfone/carbon molecular sieve based mixed matrix membranes for water treatment applications. Procedia Eng 148:588–593. CrossRefGoogle Scholar
  26. 26.
    Sivakumar P, Ramesh R, Ramanand A et al (2013) Synthesis and characterization of NiFe2O4 nanoparticles and nanorods. J Alloys Compd 563:6–11. CrossRefGoogle Scholar
  27. 27.
    Bae TH, Kim IC, Tak TM (2006) Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes. J Membr Sci 275:1–5. CrossRefGoogle Scholar
  28. 28.
    Abedini R, Mousavi SM, Aminzadeh R (2011) A novel cellulose acetate (CA) membrane using TiO2 nanoparticles: preparation, characterization and permeation study. Desalination 277:40–45. CrossRefGoogle Scholar
  29. 29.
    Souza VC, Quadri MGN (2013) Organic–inorganic hybrid membranes in separation processes: a 10-year review. Braz J Chem Eng 30:683–700. CrossRefGoogle Scholar
  30. 30.
    Baltrusaitis J, Jayaweera PM, Grassian VH (2011) Sulfur dioxide adsorption on TiO2 nanoparticles: influence of particle size, coadsorbates, sample pretreatment, and light on surface speciation and surface coverage. J Phys Chem C 115:492–500. CrossRefGoogle Scholar
  31. 31.
    Yang Y, Wang P (2006) Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol–gel process. Polymer (Guildf) 47:2683–2688. CrossRefGoogle Scholar
  32. 32.
    Vieth WR, Tam PM, Michaels AS (1966) Dual sorption mechanisms in glassy polystyrene. J Colloid Interface Sci 22:360–370. CrossRefGoogle Scholar
  33. 33.
    Yampolskii Y, Pinnau I, Freeman B (2006) Materials science of membranes for gas and vapor separation. Wiley, ChichesterCrossRefGoogle Scholar
  34. 34.
  35. 35.
    Baker RW (1996) Membrane technology no. 72. Membr Technol 1996:5. Google Scholar
  36. 36.
    Azizi N, Mohammadi T, Mosayebi R (2016) Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 nanocomposite membranes for CO2/CH4 separation. Chem Eng Res Des 117:177–189. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical and Materials Engineering (SCME)National University of Sciences and Technology (NUST)IslamabadPakistan

Personalised recommendations