Amino-Acid-Modified-Cashew Gum Flocculant: Synthesis, Characterization, and Application

  • Jalma Maria KleinEmail author
  • Vanessa Silva de Lima
  • Michele Haack
  • José Manoel Couto da Feira
  • Maria Madalena de Camargo Forte
Original paper


Amphoteric poly(O-methacryloyl-l-serine)-grafted cashew gum (CG-g-P(SerMA)) flocculant was obtained with highly efficient in separation and sequential recovery of kaolin particles from aqueous suspension. The highest flocculation efficiency was achieved with a flocculant synthesized using an O-methacryloyl-l-serine:cashew gum molar ratio of 3:1. The CG-g-P(SerMA) at a dosage of 3.0 mg L−1 resulted in a flocculation efficiency of more than 90% within 20 min for kaolin suspension. The efficiency, in standard experiments, the flocculant CG-g-P(SerMA) was superior to cashew gum and polyacrylamide-based commercial flocculants. The flocculation mechanism involves electrostatic interactions between the negatively charged surface of the kaolin and the protonated amino groups of the flocculant under acidic conditions. These results provide new opportunities and challenges for understanding and improving the removal of impurities present in water and wastewater.


Cashew gum Amino acid Flocculation Graft copolymer Amphoteric polymers 



The authors are grateful by Brazilian agencie: Conselho Nacional de Desenvolvimento Científico e Tecnológico (Cnpq) [Grant Number 502001/2014-3] and the Empresa Brasileira de Pesquisa Agropecuária (Embrapa)—Campo Experimental de Pacajus-CE for the cashew gum supply.

Supplementary material

10924_2019_1440_MOESM1_ESM.docx (108 kb)
Supplementary material 1 (DOCX 108 kb)


  1. 1.
    Sharma BR, Dhuldhoya NC, Merchant UC (2006) Flocculants—an ecofriendly approach. J Polym Env 14:195CrossRefGoogle Scholar
  2. 2.
    Renault F, Sancey B, Badot P, Crini G (2009) Chitosan for coagulation/flocculation processes—an eco-friendly approach. Eur Polym J 45:1337CrossRefGoogle Scholar
  3. 3.
    Tripathy T, Pandey S, Karmakar N et al (1999) Novel flocculating agent based on sodium alginate and acrylamide. Eur Polym J 35:2057CrossRefGoogle Scholar
  4. 4.
    Sen G, Kumar R, Ghosh S, Pal S (2009) A novel polymeric flocculant based on polyacrylamide grafted carboxymethylstarch. Carbohydr Polym 77:822CrossRefGoogle Scholar
  5. 5.
    Giri TK, Pure S, Tripathi DK (2015) Synthesis of graft copolymers of acrylamide for locust bean gum using microwave energy: swelling behavior, flocculation characteristics and acute toxicity study. Polimeros 25:168CrossRefGoogle Scholar
  6. 6.
    Sand A, Yadav M, Mishra DK, Behari K (2010) Modification of alginate by grafting of N-vinyl-2-pyrrolidone and studies of physicochemical properties in terms of swelling capacity, metal-ion uptake and flocculation. Carbohydr Polym 80:1147CrossRefGoogle Scholar
  7. 7.
    Razali MAA, Ariffin A (2015) Polymeric flocculant based on cassava starch grafted polydiallyldimethylammonium chloride: flocculation behavior and mechanism. Appl Surf Sci 351:89CrossRefGoogle Scholar
  8. 8.
    Sarkar AK, Mandre NR, Panda AB, Pal S (2013) Amylopectin grafted with poly (acrylic acid): development and application of a high performance flocculant. Carbohydr Polym 95:753CrossRefGoogle Scholar
  9. 9.
    Bolto B, Gregory J (2007) Organic polyelectrolytes in water treatment. Water Res 41:2301CrossRefGoogle Scholar
  10. 10.
    International Agency for Research on Cancer (IARC) (1994) Acrylamide 60:389Google Scholar
  11. 11.
    Jia S, Yang Z, Ren K et al (2016) Removal of antibiotics from water in the coexistence of suspended particles and natural organic matters using amino-acid-modified-chitosan flocculants: a combined experimental and theoretical study. J Hazard Mater 317:593CrossRefGoogle Scholar
  12. 12.
    Ren W, Zhang A, Qin S, Li Z (2016) Synthesis and evaluation of a novel cationic konjac glucomannan-based flocculant. Carbohydr Polym 144:238CrossRefGoogle Scholar
  13. 13.
    Barrera DA, Zylstra E, Lansbury PT, Langer R (1993) Synthesis and RGD peptide modification of a new biodegradable copolymer: poly (lactic acid-celysine). J Am Chem Soc 115:11010CrossRefGoogle Scholar
  14. 14.
    Gonsalves KE, Jin S, Baraton MI (1998) Synthesis and surface characterization of functionalized polylactide copolymer microparticles. Biomaterials 19:1501CrossRefGoogle Scholar
  15. 15.
    Romanski J, Karbarz M, Pyrzynska K et al (2012) Polymeric hydrogels modified with ornithine and lysine: sorption and release of metal cations and amino acids. J Polym Sci A 1(50):542CrossRefGoogle Scholar
  16. 16.
    Sousa CAD, Pereira C, Rodríguez-Borges JE, Freire C (2015) l-Serine functionalized clays: preparation and characterization. Polyhedron 102:121CrossRefGoogle Scholar
  17. 17.
    Shiraishi K, Ohnishi T, Sugiyama K (1998) Preparation of poly(methyl methacrylate) microspheres modified with amino acid moieties. Macromol Chem Phys 199:2023CrossRefGoogle Scholar
  18. 18.
    Liu Q, Singh A, Liu L (2013) Amino acid-based zwitterionic poly(serine methacrylate) as an antifouling material. Biomacromol 14:226CrossRefGoogle Scholar
  19. 19.
    Shiraishi K, Ohnishi T, Sugiyama K et al (1997) Surface modified poly(methyl methacrylate) microspheres with the O-methacryloyl-l-serine moiety. Chem Lett 26:863CrossRefGoogle Scholar
  20. 20.
    Jia S, Yang Z, Yang W et al (2016) Removal of Cu (II) and tetracycline using an aromatic enhanced interaction between the flocculant and the antibiotic. Chem Eng J 283:495CrossRefGoogle Scholar
  21. 21.
    Guilherme M, Reis A, Takahashi S et al (2005) Synthesis of a novel superabsorbent hydrogel by copolymerization of acrylamide and cashew gum modified with glycidyl methacrylate. Carbohyd Polym 61:464CrossRefGoogle Scholar
  22. 22.
    Klein JM, de Lima VS, da Feira JMC et al (2016) Chemical modification of cashew gum with acrylamide using an ultrasound-assisted method. J Appl Polym Sci 133:43634CrossRefGoogle Scholar
  23. 23.
    Lima MR, Paula HCB, Abreu FOMS et al (2018) Hydrophobization of cashew gum by acetylation mechanism and amphotericin B encapsulation. Int J Biol Macromol 108:523CrossRefGoogle Scholar
  24. 24.
    Paula HCB, Sombra FM, Cavalcante RF et al (2011) Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Mater Sci Eng, C 31:173CrossRefGoogle Scholar
  25. 25.
    de Paula RCM, Heatley F, Budd PM (1998) Characterization of Anacardium occidentale exudate polysaccharide. Polym Int 45:27CrossRefGoogle Scholar
  26. 26.
    Menestrina JM, Iacomini M, Jones C, Gorin PAJ (1998) Similarity of monosaccharide, oligosaccharide and polysaccharide structures in gum exudate of anacardium occidentale. Phytochemistry 47:715CrossRefGoogle Scholar
  27. 27.
    de Paula RCM, Rodrigues JF (1995) Composition and rheological properties of cashew tree gum, the exudate polysaccharide from Anacardium occidentale L. Carbohydr Polym 26:177CrossRefGoogle Scholar
  28. 28.
    Rodrigues JF, de Paula RCM, Costa SMO (1993) Métodos de isolamento de gomas naturais: Comparação através da goma do cajueiro (Anacardium Occidentale L.). Polimeros 3:31Google Scholar
  29. 29.
    Nagaoka S, Shundo A, Satoh T et al (2005) Method for a convenient and efficient synthesis of amino acid acrylic monomers with zwitterionic structure. Synth Commun 35:2529CrossRefGoogle Scholar
  30. 30.
    Cunha PLR, Maciel JS, Sierakowski MR et al (2007) Oxidation of cashew tree gum exudate polysaccharide with TEMPO reagent. J Brazil Chem Soc 18:85CrossRefGoogle Scholar
  31. 31.
    da Silva DA, de Paula RCM, Feitosa JPA (2007) Graft copolymerisation of acrylamide onto cashew gum. Eur Polym J 43:2620CrossRefGoogle Scholar
  32. 32.
    Costa C, Santos VHS, Araujo PHH et al (2009) Microwave-assisted rapid decomposition of persulfate. Eur Polym J 45:2011CrossRefGoogle Scholar
  33. 33.
    Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zohuriaan MJ (2004) Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt- and pH-responsiveness properties. Eur Polym J 40:1399CrossRefGoogle Scholar
  34. 34.
    Yadav M, Mishra DK, Sand A, Behari K (2011) Modification of alginate through the grafting of 2-acrylamidoglycolic acid and study of physicochemical properties in terms of swelling capacity, metal ion sorption, flocculation and biodegradability. Carbohydr Polym 84:83CrossRefGoogle Scholar
  35. 35.
    Anderson DMW, Bell PC (1975) Structural analysis of the gum polysaccharide from Anacardium occidentale. Anal Chim Acta 79:185CrossRefGoogle Scholar
  36. 36.
    Klee JE, Lehmann U (2009) N-alkyl-N-(phosphonoethyl) substituted (meth) acrylamides—new adhesive monomers for self-etching self-priming one part dental adhesive. Beilstein J Org Chem 5:1CrossRefGoogle Scholar
  37. 37.
    Pearson AJ, Roush WR (1999) Handbook of reagents for organic synthesis. Activating Agents and Protecting Groups. John Wiley & Sons Ltd, ChichesterGoogle Scholar
  38. 38.
    Silva D, de Paula RCM, Feitosa J et al (2004) Carboxymethylation of cashew tree exudate polysaccharide. Carbohydr Polym 58:163CrossRefGoogle Scholar
  39. 39.
    Zohuriaan M, Shokrolahi F (2004) Thermal studies on natural and modified gums. Polym Test 23:575CrossRefGoogle Scholar
  40. 40.
    Zhou Y, Franks GV (2006) Flocculation mechanism induced by cationic polymers investigated by light scattering. Langmuir 22:6775CrossRefGoogle Scholar
  41. 41.
    Shi Y, Ju B, Zhang S (2012) Flocculation behavior of a new recyclable flocculant based on pH responsive tertiary amine starch ether. Carbohydr Polym 88:132CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratório de Materiais Poliméricos, Departamento de Materiais, Escola de EngenhariaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations