Advertisement

Novel Biocide Based on Cationic Derivative of Psyllium: Surface Modification and Antibacterial Activity

  • Pinki Pal
  • Aparna Banerjee
  • Karuna Soren
  • Priyanka Chakraborty
  • Jay Prakash Pandey
  • Gautam Sen
  • Rajib BandopadhyayEmail author
Original paper

Abstract

To circumvent the problems (such as volatilization, photolytic decomposition, chemical instability, easy permeability through the skin) associated with low molecular weight antimicrobial agents, our strategy employed graft copolymerization of cationic monomer with the polymeric substrate viz. psyllium husk. The surface graft concentration of quaternary ammonium ion on psyllium was optimized by measuring the extent of grafting in the microwave-induced process. The surface modification of graft copolymers was evident by different physico–chemical techniques like 13C nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffractometer (XRD), differential scanning calorimetry (DSC), Thermo gravimeteric analysis (TGA), and viscometric study. The synthesized water soluble product resulted good antibacterial activity against Gram positive Staphylococcus aureus and Bacillus anthracis but failed to produce any antibacterial activity against Gram negative Salmonella typhi and Escherichia coli. The reason to failure has been explained on the basis of differences in the electrokinetic property between Gram-positive and Gram-negative bacteria. Optimum minimum inhibitory concentration (MIC) for the polymeric grade which showed good biocidal effect evaluated by both zone of inhibition and absorbance is found at 1000 µg/ml.

Keywords

DADMAC Cationic graft copolymer Biocide Minimum inhibitory concentration 

Notes

Acknowledgements

We sincerely thank Department of Science and Technology (DST), India, for providing the research Grant (Sanction Order No. SR/WOS-A/ET-13/2014). We are grateful to CIF-BIT, Mesra and Department of Botany, The University of Burdwan for their kind support. Aparna Banerjee is thankful for the financial assistance from the SRF (State Funded) [Fc (Sc.)/RS/SF/BOT./2014-15/103(3)] for the first phase of the research and to Vicerrectoría de Investigación y Posgrado (VRIP) of Universidad Católica del Maule for the Postdoctoral fellowship.

References

  1. 1.
    Kenawy ER, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromol 8(5):1359–1384CrossRefGoogle Scholar
  2. 2.
    Kenawy ER, Abdel-Hay FI, El-Magd AA, Mahmoud Y (2006) Biologically active polymers: VII. Synthesis and antimicrobial activity of some crosslinked copolymers with quaternary ammonium and phosphonium groups. React Funct Polym 66(4):419–429CrossRefGoogle Scholar
  3. 3.
    Li G, Shen J, Zhu Y (1998) Study of pyridinium-type functional polymers II. Antibacterial activity of soluble pyridinium-type polymers. J Appl Polym Sci 67(10):1761–1768CrossRefGoogle Scholar
  4. 4.
    Bekiaria V, Nikolaoua K, Koromilasb N, Lainiotib G, Avramidisc P, Hotosa G, Kallitsis JK, Bokias G (2015) Release of polymeric biocides from synthetic matrices for marine biofouling applications. Agric Agric Sci Procedia 4:445–450Google Scholar
  5. 5.
    Murataa H, Koepselb RR, Matyjaszewskic K, Russella AJ (2007) Permanent, non-leaching antibacterial surfaces—2: how high density cationic surfaces kill bacterial cells. Biomaterials 28(32):4870–4879CrossRefGoogle Scholar
  6. 6.
    Alamril A, El-Newehy MH, Al-Deyab SS (2012) Biocidal polymers: synthesis and antimicrobial properties of benzaldehyde derivatives immobilized onto amine-terminated polyacrylonitrile. Chem Cent J 6:111–118Google Scholar
  7. 7.
    Kourai H, Yabuhara T, Shirai A, Maeda T, Nagamune H (2006) Syntheses and antimicrobial activities of a series of new bis-quaternary ammonium compounds. Eur J Med Chem 41(4):437–444CrossRefGoogle Scholar
  8. 8.
    Li S, Dong S, Xu W, Tu S, Yan L, Zhao C, Ding J, Chen X (2018) Antibacterial hydrogels. Adv Sci 5(5):1700527CrossRefGoogle Scholar
  9. 9.
    Banerjee A, Bandopadhyay R (2016) Use of dextran nanoparticle: a paradigm shift in bacterial exopolysaccharide based biomedical applications. Int J Biol Macromol 87:295–301CrossRefGoogle Scholar
  10. 10.
    Banerjee A, Halder U, Bandopadhyay R (2017) Preparations and applications of polysaccharide based green synthesized metal nanoparticles: a state-of-the-art. J Clust Sci 28(4):1803–1813CrossRefGoogle Scholar
  11. 11.
    Lin J, Ding J, Dai Y, Wang X, Wei J, Chen Y (2017) Antibacterial zinc oxide hybrid with gelatin coating. Mater Sci Eng C 81:321–326CrossRefGoogle Scholar
  12. 12.
    Bose RJ, Ahn JC, Yoshie A, Park S, Park H, Lee SH (2015) Preparation of cationic lipid layered PLGA hybrid nanoparticles for gene delivery. J Control Release 213:e92CrossRefGoogle Scholar
  13. 13.
    Chen CZ, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23(16):3359–3368CrossRefGoogle Scholar
  14. 14.
    Chen CZ, Cooper SL (2000) Recent advances of dendrimer biocides. Adv Mater 12(11):843–854CrossRefGoogle Scholar
  15. 15.
    Chen CZ, Van Dyk T, Dhurjati P, LaRossa R, Cooper SL (2000) Quaternary ammonium functionalized dendrimers as effective antimicrobials: structure–activity studies. Biomacromol 1(3):473–480CrossRefGoogle Scholar
  16. 16.
    Gabriel GJ, Som A, Madkour AE, Eren T, Tew GN (2007) Infectious disease: connecting innate immunity to biocidal polymers. Mater Sci Eng R Rep 57(1–6):28–64CrossRefGoogle Scholar
  17. 17.
    Timofeeva L, Kleshcheva N (2011) Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl Microbiol Biotechnol 89(3):475–492CrossRefGoogle Scholar
  18. 18.
    Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll 29(1):48–56CrossRefGoogle Scholar
  19. 19.
    Mcdonnell G, Russell DA (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12(1):147–179CrossRefGoogle Scholar
  20. 20.
    Santos MRE, Fonseca AC, Mendonça PV, Branco R, Serra AC, Morais PV, Coelho JFJ (2016) Recent developments in antimicrobial polymers: a review. Materials 9:599CrossRefGoogle Scholar
  21. 21.
    Pal P, Pandey JP, Sen G (2017) Synthesis, characterization and flocculation studies of a novel graft copolymer towards destabilization of carbon nano-tubes from effluent. Polymer 112:159–168CrossRefGoogle Scholar
  22. 22.
    Pal P, Pandey JP, Sen G (2017) Synthesis of polyacrylamide grafted polyvinyl pyrrolidone (PVP-g-PAM) and study of its application in algal biomass harvesting. Ecol Eng 100:19–27CrossRefGoogle Scholar
  23. 23.
    Fischer MH, Yu N, Gray GR, Ralph J, Anderson L, Marlett JA (2004) The gel-forming polysaccharide of psyllium husk (Plantago ovate Forsk). Carbohydr Res 339(11):2009–2017CrossRefGoogle Scholar
  24. 24.
    Masood R, Miraftab M, Hussain T, Edward-Jones V (2015) Development of slow release silver-containing biomaterial for wound care applications. J Ind Text 44(5):699–708CrossRefGoogle Scholar
  25. 25.
    Kongparakul S, Prasassarakich S, Rempel LG (2008) Effect of grafted methyl methacrylate on the catalytic hydrogenation of natural rubber. Eur Polym J 44(6):1915–1920CrossRefGoogle Scholar
  26. 26.
    Pirgalioglu S, Ozbelge TA, Ozbelge HO, Bicak N (2015) Crosslinked poly(DADMAC) gels as highly selective and reusable arsenate binding materials. Chem Eng J 262:605–617CrossRefGoogle Scholar
  27. 27.
    Fanta GF (1973) Properties and applications of graft and block copolymers of starch. In: Ceresa RJ (ed) Block and graft copolymerization. Wiley, New York, pp 29–41Google Scholar
  28. 28.
    Fanta GF (1973) Synthesis of graft and block copolymers of starch. In: Ceresa RJ (ed) Block and graft copolymerization. Wiley, New York, pp 1–11Google Scholar
  29. 29.
    Collins EA, Bares J, Billmeyer FW (1973) Experiments in polymer science. Wiley, New YorkGoogle Scholar
  30. 30.
    Adhikari S, Lohar S, Kumari B, Banerjee A, Bandopadhyay R, Matalobos JS, Das D (2016) Cu (II) complex of a new isoindole derivative: structure, catecholase like activity, antimicrobial properties and bio-molecular interactions. New J Chem 40:10094–10099CrossRefGoogle Scholar
  31. 31.
    Pal P, Banerjee A, Halder U, Pandey JP, Sen G, Bandopadhyay R (2018) Conferring antibacterial properties on sesbania gum via microwave-assisted graft copolymerization of DADMAC. J Polym Environ.  https://doi.org/10.1007/s10924-018-1213-8 Google Scholar
  32. 32.
    Sen G, Pal S (2009) A novel polymeric biomaterial based on carboxymethyl starch and its application in controlled drug release. J Appl Polym Sci 114(5):2798–2805CrossRefGoogle Scholar
  33. 33.
    Singh RP (1995) Advanced drag reducing and flocculating materials based on polysaccharides. In: Prasad N, Mark JE, Fai TJ (eds) Polymers and other advanced materials: emerging technologies and business opportunities. Plenum Press, New York, pp 227–249CrossRefGoogle Scholar
  34. 34.
    Singh RP, Karmakar GP, Rath SK, Karmakar NC, Pandey SR, Tripathy T (2000) Biodegradable drag reducing agents and flocculants based on polysaccharides: materials and applications. Polym Eng Sci 40(1):46–60CrossRefGoogle Scholar
  35. 35.
    Razali MAA, Sanusi N, Ismail H, Othman N, Ariffin A (2012) Application of response surface methodology (RSM) for optimization of cassava starch grafted polyDADMAC synthesis for cationic properties. Starch 64(12):935–943CrossRefGoogle Scholar
  36. 36.
    Liu F, Ma B, Zhou D, Zhu L, Fu Y, Xue L (2015) Positively charged loose nanofiltration membrane grafted by diallyldimethyl ammonium chloride (DADMAC) via UV for salt and dye removal. React Funct Polym 86:191–198CrossRefGoogle Scholar
  37. 37.
    Lokesh P, Luzinova Y, Cho M, Mizaikoff B, Kim JM, Huang C (2011) Poly DADMAC and dimethylamine as precursors of N-nitrosodimethylamine during ozonation: reaction kinetics and mechanisms. Environ Sci Technol 45(10):4353–4359CrossRefGoogle Scholar
  38. 38.
    Mazloumpour M, Malshe P, El-Shafei A, Hauser P (2013) Conferring durable antimicrobial properties on nonwoven polypropylene via plasma-assisted graft polymerization of DADMAC. Surf Coat Technol 224:1–7CrossRefGoogle Scholar
  39. 39.
    Park SH, Wei S, Mizaikoff B, Taylor AE, Favero CD, Huang CH (2009) Degradation of amine-based water treatment polymers during chloramination as N-nitrodimethylamine (NDMA) precursors. Environ Sci Technol 43(5):1360–1366CrossRefGoogle Scholar
  40. 40.
    Gottenbosa B, Van der Meia HC, Klatterb F, Nieuwenhuisb P, Busscher HJ (2002) In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials 23(6):1417–1423CrossRefGoogle Scholar
  41. 41.
    Carrier D, Dufourcq J, Faucon JF, Pezolet M (1985) A fluorescence investigation of the effects of polylysine on dipalmitoylphosphatidylglycerol bilayers. Biochim Biophys Acta 820(1):131–139CrossRefGoogle Scholar
  42. 42.
    Oku N, Yamaguchi N, Shibamoto S, Ito F, Nango M (1986) The fusogenic effect of synthetic polycations on negatively charged lipid bilayers. J Biochem 100(4):935–944CrossRefGoogle Scholar
  43. 43.
    Franklin TJ, Snow GA (1981) Antiseptics, antibiotics and the cell membrane. In: Franklin TJ, Snow GA (eds) Biochemistry of antimicrobial action. Chapman & Hall, London, pp 58–78Google Scholar
  44. 44.
    Broxton N, Woodcock PM, Gilbert P (1983) A study of the antibacterial activity of some polyhexamethylene biguanides towards Escherichia coli ATCC 8739. J Appl Bacteriol 54(3):345–353CrossRefGoogle Scholar
  45. 45.
    Broxton N, Woodcock PM, Heatley M, Gilbert P (1984) Interaction of some polyhexamethylene biguanides and membrane phospholipids in Escherichia coli. J Appl Bacteriol 57(1):115–124CrossRefGoogle Scholar
  46. 46.
    Liu XF, Guan YL, Yang DZ, Li Z, Yao KD (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79(7):1324–1335CrossRefGoogle Scholar
  47. 47.
    Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: application and mode of action. Biomacromol 4(6):1457–1465CrossRefGoogle Scholar
  48. 48.
    Zhao L, Mitomo H, Zhai M, Yoshii F, Nagasawa N, Kume T (2003) Synthesis of antibacterial PVP/CM-chitosan blend hydrogels with electron beam irradiation. Carbohydr Polym 53:439–446CrossRefGoogle Scholar
  49. 49.
    Jia Z, Shen D, Xu W (2001) Synthesis and antibacterial activities of quaternary ammonium salts of chitosan. Carbohydr Res 333(1):1–6CrossRefGoogle Scholar
  50. 50.
    Hazziza-Laskar J, Helary G, Sauvet G (1995) Biocidal polymers active by contact. IV. Polyurethane based on polysiloxanes with pandent primery alcohol and quaternary ammonium groups. J Appl Polym Sci 58(1):77–84CrossRefGoogle Scholar
  51. 51.
    Halder S, Yadav KK, Sarkar R, Mukherjee S, Saha P, Haldar S, Karmakar S, Sen T (2015) Alteration of zeta potential and membrane permeability in bacteria: a study with cationic agents. SpringerPlus 4:672–685CrossRefGoogle Scholar
  52. 52.
    Klodzinska E, Szumski M, Dziubakiewicz E, Hrynkiewicz K, Skwarek E, Janusz W, Buszewski B (2010) Effect of zeta potential value on bacterial behavior during electrophoretic separation. Electrophoresis 31(9):1590–1596CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryBirla Institute of Technology, MesraRanchiIndia
  2. 2.Department of Botany, UGC-Centre of Advanced StudyThe University of BurdwanBardhamanIndia
  3. 3.Vicerrectoría de Investigación y Posgrado, Facultad de Ciencias Agrarias y ForestalesUniversidad Católica del MauleTalcaChile

Personalised recommendations