Journal of Polymers and the Environment

, Volume 27, Issue 5, pp 1105–1111 | Cite as

Physico-chemical Characterization of Poly(3-Hydroxybutyrate) Produced by Halomonas salina, Isolated from a Hypersaline Microbial Mat

  • Emanuel Hernández-Núñez
  • Carolina Alejandra Martínez-Gutiérrez
  • Alejandro López-Cortés
  • Ma. Leopoldina Aguirre-Macedo
  • Carolina Tabasco-Novelo
  • Maria Ortencia González-DíazEmail author
  • José Q. García-MaldonadoEmail author
Original paper


In this work, the characterization of poly(3-hydroxybutyrate) PHB produced by Halomonas salina isolated from a hypersaline microbial mat from Guerrero Negro, Baja California Sur, Mexico, is reported. The bacterial strain was able to produce isotactic PHB biopolymer with glucose (1%) as a single carbon source. The chemical structure of the polymer obtained was confirmed by Fourier-transform infrared (FTIR) and Nuclear magnetic resonance (NMR) spectroscopy. The polymer was thermally stable up to 225 °C and Differential scanning calorimetry (DSC) analysis showed a melting temperature (Tm) of 173.6 °C. The obtained polymer presented a lower degree of crystallinity (39.3%) in comparison with PHB produced by other bacteria and polyhydroxyalkanoate co-polymers. Thus, the PHB biopolymer obtained in this study, could be recognized as more suitable for practical use, contributing to the repertoire of available bioplastics for further potential biotechnological applications, in which elastic polymers are needed.


Poly(3-hydroxybutyrate) Halomonas salina Biopolymer Hypersaline microbial mats 



We thank to LANNBIO CINVESTAV-Merida (projects FOMIX-Yucatan 2008-108160, CONACYT LAB-2009-01 No. 123913 and CB20121 178947) for the TGA, XRD, NMR and SEM-EDX measurements. The authors acknowledge the Cátedras CONACYT projects 3139 and 1568. We highly appreciate the technical support of Hever Latisnere-Barragán in the laboratory (CIBNOR) and Dr Wilberth Herrera Kao for assistance with GPC measurements.


  1. 1.
    Lathwal P, Nehra K, Singh M, Rana JS (2018) Characterization of novel and efficient poly-3-hydroxybutyrate (PHB) producing bacteria isolated from rhizospheric soils. J Polym Environ 26:3437–3450. CrossRefGoogle Scholar
  2. 2.
    Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53Google Scholar
  3. 3.
    Obruca S, Sedlacek P, Koller M et al (2018) Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol Adv 36:856–870. CrossRefGoogle Scholar
  4. 4.
    Waltermannn M, Steinbuchel A (2005) Neutral iipid bodies in prokaryotes: Recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619. CrossRefGoogle Scholar
  5. 5.
    López-Cortés A, Lanz-Landázuri A, García-Maldonado JQ (2008) Screening and isolation of PHB-producing bacteria in a polluted marine microbial mat. Microb Ecol 56:112–120. CrossRefGoogle Scholar
  6. 6.
    Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696. CrossRefGoogle Scholar
  7. 7.
    Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472Google Scholar
  8. 8.
    Chen G-Q (2010) Plastics completely synthesized by bacteria: Polyhydroxyalkanoates. Springer, Berlin, pp 17–37Google Scholar
  9. 9.
    Lee SY (2000) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14CrossRefGoogle Scholar
  10. 10.
    Cai L, Mei-Qing Y, Liu F et al (2009) Enhanced production of medium-chain-length polyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of Pseudomonas putida KT2442. Bioresour Technol 100:2265–2270. CrossRefGoogle Scholar
  11. 11.
    Castilho LR, Mitchell DA, Freire DMG (2009) Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour Technol 100:5996–6009. CrossRefGoogle Scholar
  12. 12.
    Chaudhry WN, Jamil N, Ali I et al (2011) Screening for polyhydroxyalkanoate (PHA)-producing bacterial strains and comparison of PHA production from various inexpensive carbon sources. Ann Microbiol 61:623–629. CrossRefGoogle Scholar
  13. 13.
    Choi J, Lee SY (1997) Process analysis and economic evaluation for Poly(3-hydroxybutyrate) production by fermentation. Bioprocess Eng 17:335. CrossRefGoogle Scholar
  14. 14.
    Koller M, Gasser I, Schmid F, Berg G (2011) Linking ecology with economy: Insights into polyhydroxyalkanoate-producing microorganisms. Eng Life Sci 11:222–237. CrossRefGoogle Scholar
  15. 15.
    Ley RE, Harris JK, Wilcox J et al (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695. CrossRefGoogle Scholar
  16. 16.
    García-Maldonado JQ, Escobar-Zepeda A, Raggi L et al (2018) Bacterial and archaeal profiling of hypersaline microbial mats and endoevaporites, under natural conditions and methanogenic microcosm experiments. Extremophiles 22:903–916. CrossRefGoogle Scholar
  17. 17.
    Villanueva L, Del Campo J, Guerrero R (2010) Diversity and physiology of polyhydroxyalkanoate producing and degrading strains in microbial mats. FEMS Microbiol Ecol 74:42–54. CrossRefGoogle Scholar
  18. 18.
    Martínez-Gutiérrez CA, Latisnere-Barragán H, García-Maldonado JQ, López-Cortés A (2018) Screening of polyhydroxyalkanoate producing bacteria and PhaC-encoding genes in two hypersaline microbial mats from Guerrero Negro, Baja California Sur. Mexico PeerJ 6:e4780. CrossRefGoogle Scholar
  19. 19.
    Cervantes-Uc JM, Catzin J, Vargas I et al (2014) Biosynthesis and characterization of polyhydroxyalkanoates produced by an extreme halophilic bacterium, Halomonas nitroreducens, isolated from hypersaline ponds. J Appl Microbiol 117:1056–1065. CrossRefGoogle Scholar
  20. 20.
    Rathi D-N, Amir HG, Abed RMM et al (2013) Polyhydroxyalkanoate biosynthesis and simplified polymer recovery by a novel moderately halophilic bacterium isolated from hypersaline microbial mats. J Appl Microbiol 114:384–395. CrossRefGoogle Scholar
  21. 21.
    Kucera D, Pernicová I, Kovalcik A et al (2018) Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresour Technol 256:552–556. CrossRefGoogle Scholar
  22. 22.
    Koller M (2015) Recycling of waste streams of the biotechnological poly(hydroxyalkanoate) production by Haloferax mediterranei on whey. Int J Polym Sci 2015:.
  23. 23.
    Yin J, Chen JC, Wu Q, Chen GQ (2015) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33:1433–1442. CrossRefGoogle Scholar
  24. 24.
    Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24–27CrossRefGoogle Scholar
  25. 25.
    Law JH, Slepecky RA (1961) Assay of poly-beta-hydroxybutyric acid. J Bacteriol 82:33–36Google Scholar
  26. 26.
    Rohini D, Phadnis S, Rawal SK (2006) Synthesis and characterization of poly-β-hydroxybutyrate from Bacillus thuringiensis R1. Indian J Biotechnol 5:276–283Google Scholar
  27. 27.
    Mohandas SP, Balan L, Lekshmi N et al (2017) Production and characterization of polyhydroxybutyrate from Vibrio harveyi MCCB 284 utilizing glycerol as carbon source. J Appl Microbiol 122:698–707. CrossRefGoogle Scholar
  28. 28.
    Porter M, Yu J (2011) Monitoring the in situ crystallization of native biopolyester granules in Ralstonia eutropha via infrared spectroscopy. J Microbiol Methods 87:49–55. CrossRefGoogle Scholar
  29. 29.
    Jan S, Roblot C, Courtois J et al (1996) 1H NMR spectroscopic determination of poly 3-hydroxybutyrate extracted from microbial biomass. Enzyme Microb Technol 18:195–201. CrossRefGoogle Scholar
  30. 30.
    James BW, Mauchline WS, Dennis PJ et al (1999) Poly-3-hydroxybutyrate in Legionella pneumophila, an energy source for survival in low-nutrient environments. Appl Environ Microbiol 65:822–827Google Scholar
  31. 31.
    Rozsa C, Gonzalez M, Galego N et al (1996) Biosynthesis and characterization of poly(β-hydroxybutyrate) produced by Bacillus Circulans. Polym Bull 37:429–435. CrossRefGoogle Scholar
  32. 32.
    Li S-D, He J-D, Yu PH, Cheung MK (2003) Thermal degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as studied by TG, TG-FTIR, and Py-GC/MS. J Appl Polym Sci 89:1530–1536. CrossRefGoogle Scholar
  33. 33.
    Kong Y, Hay JN (2002) The measurement of the crystallinity of polymers by DSC. Polymer 43:3873–3878. CrossRefGoogle Scholar
  34. 34.
    Kulkarni SO, Kanekar PP, Jog JP et al (2015) Production of copolymer, poly (hydroxybutyrate-co-hydroxyvalerate) by Halomonas campisalis MCM B-1027 using agro-wastes. Int J Biol Macromol 72:784–789. CrossRefGoogle Scholar
  35. 35.
    Xu S, Luo R, Wu L et al (2006) Blending and characterizations of microbial poly(3-hydroxybutyrate) with dendrimers. J Appl Polym Sci 102:3782–3790. CrossRefGoogle Scholar
  36. 36.
    Manna A, Pal S, Paul AK (2000) Synthesis and accumulation of poly(3-hydroxybutyric acid) by Rhizobium sp. Acta Biol Hungarica 51:73–82Google Scholar
  37. 37.
    Dias JML, Lemos PC, Serafim LS et al (2006) Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: From the substrate to the final product. Macromol Biosci 6:885–906. CrossRefGoogle Scholar
  38. 38.
    Horng Y-T, Chien C-C, Wei Y-H et al (2011) Functional cis-expression of phaCAB genes for poly(3-hydroxybutyrate) production by Escherichia coli. Lett Appl Microbiol 52:475–483. CrossRefGoogle Scholar
  39. 39.
    Bengtsson S, Pisco AR, Johansson P et al (2010) Molecular weight and thermal properties of polyhydroxyalkanoates produced from fermented sugar molasses by open mixed cultures. J Biotechnol 147:172–179. CrossRefGoogle Scholar
  40. 40.
    Hermann-Krauss C, Koller M, Muhr A et al (2013) Archaeal production of polyhydroxyalkanoate (PHA) Co- and terpolyesters from biodiesel industry-derived by-products. Archaea. Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Emanuel Hernández-Núñez
    • 1
  • Carolina Alejandra Martínez-Gutiérrez
    • 2
  • Alejandro López-Cortés
    • 2
  • Ma. Leopoldina Aguirre-Macedo
    • 3
  • Carolina Tabasco-Novelo
    • 3
  • Maria Ortencia González-Díaz
    • 4
    Email author
  • José Q. García-Maldonado
    • 1
    Email author
  1. 1.CONACYT - Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalDepartamento de Recursos del MarMéridaMexico
  2. 2.Centro de Investigaciones Biológicas del Noroeste S.CLa PazMexico
  3. 3.Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalUnidad MéridaMéridaMexico
  4. 4.CONACYT - Centro de Investigación Científica de Yucatán A. CMéridaMexico

Personalised recommendations