Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 5, pp 1007–1024 | Cite as

An Eco-friendly Porous Poly(imide-ether)s for the Efficient Removal of Methylene Blue: Adsorption Kinetics, Isotherm, Thermodynamics and Reuse Performances

  • Arukkani MurugesanEmail author
  • M. Divakaran
  • Pranav Raveendran
  • A. B. Nitin Nikamanth
  • Kevin J. Thelly
Original paper
  • 71 Downloads

Abstract

Poly(imide-ether)s (PIEs), which is porous in nature, was synthesized using aromatic diamines and dianhydrides via the solution polycondenzation reaction. In the process, PIEs was used as an adsorbent for the removal of basic dye [Methylene blue (MB)] from the aqueous solution. The structure and the thermal stability of PIEs were characterized by FT-IR, 1H-NMR, XRD and TG analysis, and the adsorption behaviour of the PIEs was confirmed using UV/Visible, FT-IR and SEM with EDX analysis. Batch adsorption experiments were carried out and their parameters (pH 6.95), initial MB concentration (200 mg/L), adsorbent dosage (50 mg), contact time (120 min) and temperature (28 °C) were optimized. The batch adsorption experimental data of the effect of contact time, initial MB concentration and temperature were evaluated using the adsorption kinetics (Pseudo-first order, Pseudo-second order, Elovich and Intra-particle diffusion kinetic), isotherm (Langmuir, Freundlich, Redlich–Peterson and Sips isotherms) and thermodynamic models respectively. In the study, adsorption of MB onto PIEs followed Pseudo-second kinetics and found to be the best fitting model based on the obtained experimental data. The homogeneity and heterogeneity surface nature of PIEs were elucidated with two and three isotherm parameters respectively. The adsorption thermodynamic study indicates that the adsorption of MB onto PIEs was endothermic and spontaneous in nature. The adsorbed PIEs solid waste was utilized to prepare the polymer composite, and its property was characterized.

Graphical Abstract

Keywords

Poly(imide-ether)s Methylene blue Adsorption Isotherm Endothermic 

Notes

Acknowledgements

AM thanks the SSN Trust and Institutions for the grant of the Internal Funded Faculty Project. PR, NNAB and KJT thanks the SSN Trust and Institutions for the award of Internally Funded Student Project (Grant No. IFFP-CHEM-2017).

References

  1. 1.
    Zhu L, Chen L, Wu X, Ding X (2018) Ecol Indic 91:470–477CrossRefGoogle Scholar
  2. 2.
    Feng D, Bai B, Wang H, Suo Y (2018) J Polym Environ 26:567–588CrossRefGoogle Scholar
  3. 3.
    Agnihotri S, Singhal RJ, Polym Environ (2018) 26:383–395CrossRefGoogle Scholar
  4. 4.
    Novais RM, Ascensao G, Tobaldi DM, Seabra MP, Labrincha JA (2018) J Clean Prod 171:783–794CrossRefGoogle Scholar
  5. 5.
    Novais RM, Carvalheiras J, Tobaldi DM, Seabra MP, Labrincha JA (2019) J Clean Prod 207:350–362CrossRefGoogle Scholar
  6. 6.
    Dalvand A, Khoobi M, Nabizadeh R, Ganjali MR, Gholibegloo E, Mahvi AH (2018) J Polym Environ 26:3470–3483CrossRefGoogle Scholar
  7. 7.
    Shourijeh ZM, Montazerghaem L, Olya ME (2018) J Polym Environ 26:3550–3563CrossRefGoogle Scholar
  8. 8.
    Murugesan A, Vidhyadevi T, Kirupha SD, Ravikumar L, Sivanesan S (2012) Environ Prog Sustain Energy 32:673–680CrossRefGoogle Scholar
  9. 9.
    Vidhyadevi T, Murugesan A, Kalaivani SS, Anilkumar M, Thiruvenkada Ravi KV, Ravikumar L, Anuradha CD, Sivanesan S (2014) Environ Prog Sustain Energy 33:855–865CrossRefGoogle Scholar
  10. 10.
    Sun L, Chen D, Wan S, Yu Z (2018) J Polym Environ 26:765–777CrossRefGoogle Scholar
  11. 11.
    Zawani Z, Luqman CA, Choong TSY (2009) Eur J Sci Res 37:67–76Google Scholar
  12. 12.
    Mohammadi M, Hassani AJ, Mohamed AR, Najafpour GD (2010) J Chem Eng Data 55:5777–5785CrossRefGoogle Scholar
  13. 13.
    Gong R, Ye J, Dai W, Yan X, Hu J, Hu X, Li S, Huang H (2013) Ind Eng Chem Res 52:14297–14303CrossRefGoogle Scholar
  14. 14.
    Kavitha D, Namasivayam C (2007) Bioresour Technol 98:14–21CrossRefGoogle Scholar
  15. 15.
    Malarvizhi R, Ho YS (2010) Desalination 264:97–101CrossRefGoogle Scholar
  16. 16.
    Malik PK (2004) J Hazard Mater 113:81–88CrossRefGoogle Scholar
  17. 17.
    El Nemr A, Abdelwahab O, El-Sikaily A, Khaled A (2009) J Hazard Mater 161:102–110CrossRefGoogle Scholar
  18. 18.
    Preethi S, Sivasamy A, Sivanesan S, Ramamurthi V, Swaminathan G (2006) Ind Eng Chem Res 45:7627–7632CrossRefGoogle Scholar
  19. 19.
    Robinson T, Chandran B, Nigam P (2002) Water Res 36:2824–2830CrossRefGoogle Scholar
  20. 20.
    Senthilkumar S, Kalaamani P, Porkodi K, Varadarajan PR, Subburaam CV (2006) Bioresour Technol 97:1618–1625CrossRefGoogle Scholar
  21. 21.
    Chowdhury AK, Sarkar AD, Bandyopadhyay A (2009) Clean-Soil Air Water 37:581–591CrossRefGoogle Scholar
  22. 22.
    Wang S, Zhu ZH (2006) J Hazard Mater 136:946–952CrossRefGoogle Scholar
  23. 23.
    Wang S, Li H, Xu L (2006) J Colloid Interface Sci 295:71–78CrossRefGoogle Scholar
  24. 24.
    Karadag D, Akgul E, Tok S, Erturk F, Kay MA, Turan M (2007) J Chem Eng Data 52:2436–2441CrossRefGoogle Scholar
  25. 25.
    Attallah OA, Al-Ghobashy MA, Nebsen A, Salem MY (2016) RSC Adv 6:11461–11480CrossRefGoogle Scholar
  26. 26.
    Banerjee S, Gautam RK, Jaiswal A, Chattopadhyaya MC, Sharma YC (2015) RSC Adv 5:14425–14440CrossRefGoogle Scholar
  27. 27.
    Das SK, Khan MM, Parandhaman T, Laffir F, Guha AK, Sekaran G, Mandal AB (2013) Nanoscale 5:5549–5560CrossRefGoogle Scholar
  28. 28.
    Naeem H, Ajmal M, Muntha S, Ambreen J, Siddiq M (2018) RSC Adv 8:3599–3610CrossRefGoogle Scholar
  29. 29.
    Nassar MY, Khatab M (2016) RSC Adv 6:79688–79705CrossRefGoogle Scholar
  30. 30.
    Nassar MY, Ali EI, Zakaria ES (2017) RSC Adv 7:8034–8050CrossRefGoogle Scholar
  31. 31.
    Sun L, Hu S, Sun H, Guo H, Zhu H, Liu M, Sun H (2015) RSC Adv 5:11837–11844CrossRefGoogle Scholar
  32. 32.
    Xiao J, Lv W, Xie Z, Tan Y, Song Y, Zheng Q (2016) J Mater Chem A 4:12126–12135CrossRefGoogle Scholar
  33. 33.
    Guzman KAD, Taylor MR, Banfield JF (2006) Environ Sci Technol 40:1401–1407CrossRefGoogle Scholar
  34. 34.
    Murugesan A, Vidhyadevi T, Kalaivani SS, Premkumar MP, Ravikumar L, Sivanesan S (2012) Chem Eng J 197:368–378CrossRefGoogle Scholar
  35. 35.
    Mobinikhaledi A, Moghanian H, Safari P, Firuzian E (2018) J Inorg Organomet Poly Mater 28(3):631–642CrossRefGoogle Scholar
  36. 36.
    Murugesan A, Ravikumar L, Sathya Selva Bala V, SenthilKumar P, Vidhyadevi T, Dinesh kirupha S, Kalaivani SS, Krithiga S, Sivanesan S (2011) Desalination 271:199–208CrossRefGoogle Scholar
  37. 37.
    Mobaraki Z, Moghanian H, Faghihi K, Shabanian M (2018) J Inorg Organomet Poly Mater 28(3):1072–1089CrossRefGoogle Scholar
  38. 38.
    Aref L, Navarchian AH, Dadkhah D (2018) J Polym Environ 25:628–639CrossRefGoogle Scholar
  39. 39.
    Faghihi K, Moghanian H, Mozafari F, Shabanian M (2018) Chin J Poly Sci 36(7):822–834CrossRefGoogle Scholar
  40. 40.
    Ozbas Z, Demir S, Kasgoz H (2018) J Polym Environ 26:2096–2106CrossRefGoogle Scholar
  41. 41.
    Shao H, Chen N, Li S, Lin F, Jiang J, Ma X (2017) Polym 9(12):734–744CrossRefGoogle Scholar
  42. 42.
    Ravikumar L, Kalaivani S, Vidhyadevi T, Murugasen A, Kirupha SD, Sivanesan S (2014) Open J Polym Chem 4:1–11CrossRefGoogle Scholar
  43. 43.
    Kumar M, Vijayakumar G, Tamilarasan R (2018) J Polym Environ.  https://doi.org/10.1007/s10924-018-1318-0 Google Scholar
  44. 44.
    Dafader NC, Rahman N, Majumdar SK, Khan MMR, Rahman MM (2018) J Polym Environ 26:740–748CrossRefGoogle Scholar
  45. 45.
    Hasan SH, Ranjan D, Talat M (2010) Bio Resour 5(2):563–575Google Scholar
  46. 46.
    Lagergren S (1898) K Sven Vetensk akad Handl 24:1–39Google Scholar
  47. 47.
    Ho YS, McKay G (1999) Process Biochem 34:451–465CrossRefGoogle Scholar
  48. 48.
    Weber WJ, Morris JC (1963) J Sanit Eng Div 89:31–60Google Scholar
  49. 49.
    Ayawei N, Ebelegi AN, Wankasi D (2017) J Chem 5:1–11CrossRefGoogle Scholar
  50. 50.
    Sharma YC, Upadhyay SN (2009) Energy Fuels 23:2983–2988CrossRefGoogle Scholar
  51. 51.
    Gupta VK, Pathania D, Kothiyal NC, Sharma G (2014) J Mol Liq 190:139–145CrossRefGoogle Scholar
  52. 52.
    Wang Y, Xie Y, Zhang Y, Tang S, Guo C, Wu J, Lau R (2016) Chem Eng Res Des 114:258–267CrossRefGoogle Scholar
  53. 53.
    Majumdar S, Saikia U, Mahanta D (2015) J Chem Eng Data 60:3382–3391CrossRefGoogle Scholar
  54. 54.
    Zhou K, Zhang Q, Wang B, Liu J, Wen P, Gui Z, Hu Y (2014) J Clean Prod 81:281–289CrossRefGoogle Scholar
  55. 55.
    Agarwal S, Sadegh H, Monajjemi M, Hamdy AS, Ali GAM, Memar AOH, Shahryari-Ghoshekandi R, Tyagi I, Gupta VK (2016) J Mol Liq 218:191–197CrossRefGoogle Scholar
  56. 56.
    Khan AA, Singh RP (1987) Coll Surf 24(1):33–42CrossRefGoogle Scholar
  57. 57.
    Ramesh A, Lee DJ, Wong JW (2005) J Coll Interface Sci 291:588–592CrossRefGoogle Scholar
  58. 58.
    Chiu H, Wang J (2009) J Environ Protect Sci 3:102–106Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistrySSN College of EngineeringChennaiIndia
  2. 2.Department of Computer Science and EngineeringSSN College of EngineeringChennaiIndia

Personalised recommendations