Journal of Polymers and the Environment

, Volume 27, Issue 5, pp 956–967 | Cite as

Microbial Cellulose from a Komagataeibacter intermedius Strain Isolated from Commercial Wine Vinegar

  • Julia Fernández
  • A. Gala Morena
  • Susana V. Valenzuela
  • F. I. Javier Pastor
  • Pilar Díaz
  • Josefina MartínezEmail author
Original Paper


In this study a new bacterial cellulose (BC) producer isolated from commercial vinegar is identified as Komagataeibacter intermedius JF2 based on the examination of general taxonomical characteristics, 16S rDNA sequence analysis, and MALDI-TOF mass spectrometry. The cellulose produced is studied in terms of morphology by scanning electron microscopy, crystallinity by X-Ray diffraction, structure by Fourier transform infrared spectroscopy, and water absorption capacity. BC yield and characteristics of the cellulose produced by the new isolated JF2 are compared with those of the well-known and commonly-used BC producer Komagataeibacter xylinus. Yield of cellulose production was higher for JF2 than for K. xylinus grown on several culture media. JF2 exhibited maximum BC production (1.6 g/L) growing on HS medium supplemented with mannitol. The molecular structure of the produced cellulose was the same for both strains and it was in concordance with that of BC. The nanocellulose fibers produced by JF2 showed a higher degree of crystallinity and a more homogeneous size distribution than those produced by K. xylinus. The results suggested that Komagataeibacter intermedius JF2 could be a suitable candidate as a BC producer for biotechnological applications.


Bacterial cellulose Strain selection Komagataeibacter intermedius Mannitol Pellicle physicochemical properties 



This work was financed by the Scientific and Technological Research Council (MINECO, Spain), grants CTQ2017-84966-C2-2-R and CTQ2014-59632-R, and by the Pla de Recerca de Catalunya, grant 2014SGR-534 00327.


  1. 1.
    Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer MSP, Bismarck A (2008) Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers. Adv Mater 20(16):3122–3126Google Scholar
  2. 2.
    Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979Google Scholar
  3. 3.
    Castro C, Vesterinen A, Zuluaga R, Caro G, Filpponen I, Rojas OJ, Kortaberria G, Gañán P (2014) In situ production of nanocomposites of poly(vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria: effect of chemical crosslinking. Cellulose 21(3):1745–1756Google Scholar
  4. 4.
    Matthysse AG, Marry M, Krall L, Kaye M, Ramey BE, Fuqua C, White AR (2005) The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. Mol Plant-Microbe Interact 18(9):1002–1010Google Scholar
  5. 5.
    Michael Barnhart D, Su S, Baccaro BE, Banta LM, Farrand SK (2013) CelR, an ortholog of the diguanylate cyclase PleD of caulobacter, regulates cellulose synthesis in Agrobacterium tumefaciens. Appl Environ Microbiol 79(23):7188–7202Google Scholar
  6. 6.
    Yang W, Kong Z, Chen W, Wei G (2013) Genetic diversity and symbiotic evolution of rhizobia from root nodules of Coronilla varia. Syst Appl Microbiol 36(1):49–55Google Scholar
  7. 7.
    Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ (2006) Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 8(11):1997–2011Google Scholar
  8. 8.
    Brown AJ (1886) XLIII.—On an acetic ferment which forms cellulose. J Chem Soc Trans 49(0):432–439Google Scholar
  9. 9.
    Gullo M, Caggia C, De Vero L, Giudici P (2006) Characterization of acetic acid bacteria in “traditional balsamic vinegar”. Int J Food Microbiol 106(2):209–212Google Scholar
  10. 10.
    Yamada Y, Yukphan P, Vu HTL, Muramatsu Y, Ochaikul D, Nakagawa Y (2012) Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: the proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-proteobacteria. Ann Microbiol 62(2):849–859Google Scholar
  11. 11.
    Lin S-P, Calvar IL, Catchmark JM, Liu J-R, Demirci A, Cheng K-C (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20(5):2191–2219Google Scholar
  12. 12.
    Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98(2):1585–1598Google Scholar
  13. 13.
    Santos SM, Carbajo JM, Quintana E, Ibarra D, Gomez N, Ladero M, Eugenio ME, Villar JC (2015) Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydr Polym 116:173–181Google Scholar
  14. 14.
    Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262Google Scholar
  15. 15.
    Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79(4):1086–1093Google Scholar
  16. 16.
    Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545Google Scholar
  17. 17.
    Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101(15):5961–5968Google Scholar
  18. 18.
    Pirsa S, Shamusi T, Kia EM (2018) Smart films based on bacterial cellulose nanofibers modified by conductive polypyrrole and zinc oxide nanoparticles. J Appl Polym Sci 135(34):46617Google Scholar
  19. 19.
    Pacheco G, de Mello CV, Chiari-Andréo BG, Isaac VLB, Ribeiro SJL, Pecoraro É, Trovatti E (2018) Bacterial cellulose skin masks—properties and sensory tests. J Cosmet Dermatol 17(5):840–847Google Scholar
  20. 20.
    Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92(2):1432–1442Google Scholar
  21. 21.
    Kingkaew J, Kirdponpattara S, Sanchavanakit N, Pavasant P, Phisalaphong M (2014) Effect of molecular weight of chitosan on antimicrobial properties and tissue compatibility of chitosan-impregnated bacterial cellulose films. Biotechnol Bioprocess Eng 19(3):534–544Google Scholar
  22. 22.
    Gao C, Wan Y, Yang C, Dai K, Tang T, Luo H, Wang J (2011) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mater 18(2):139–145Google Scholar
  23. 23.
    Ramani D, Sastry TP (2014) Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide: a potential osteoinductive composite. Cellulose 21(5):3585–3595Google Scholar
  24. 24.
    Nimeskern L, Martínez Ávila H, Sundberg J, Gatenholm P, Müller R, Stok KS (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21Google Scholar
  25. 25.
    Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose—Part 2 Improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25(6):2997–3001Google Scholar
  26. 26.
    Markiewicz E, Hilczer B, Pawlaczyk C (2004) Dielectric and acoustic response of biocellulose. Ferroelectrics 304(1):39–42Google Scholar
  27. 27.
    Palaninathan V, Chauhan N, Poulose AC, Raveendran S, Mizuki T, Hasumura T, Fukuda T, Morimoto H, Yoshida Y, Maekawa T, Kumar DS (2014) Acetosulfation of bacterial cellulose: an unexplored promising incipient candidate for highly transparent thin film. Mater Express 4(5):415–421Google Scholar
  28. 28.
    Yoon SH, Jin H-J, Kook M-C, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7(4):1280–1284Google Scholar
  29. 29.
    Charreau H, Foresti L, Vazquez M A (2012) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7(1):56–80Google Scholar
  30. 30.
    Zhang D, Fakhrullin RF, Özmen M, Wang H, Wang J, Paunov VN, Li G, Huang WE (2011) Functionalization of whole-cell bacterial reporters with magnetic nanoparticles. Microb Biotechnol 4(1):89–97Google Scholar
  31. 31.
    Gama M, Gatenholm P, Klemm D (2013) Bacterial nanocellulose: a sophisticated multifunctional material / editado por Miguel Gama, Paul Gatenholm, Dieter Klemm. (CRC Press) Available at: to make nata de coco from coconut water&f=f Accessed July 13, 2018
  32. 32.
    Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Gonçalves-Miśkiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29(4):189–195Google Scholar
  33. 33.
    Zeng M, Laromaine A, Roig A (2014) Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulose 21(6):4455–4469Google Scholar
  34. 34.
    Karina M, Indrarti L, Yudianti R, Syampurwadi A (2012) Alteration of bacterial cellulose properties by diacetylglycerol. Procedia Chem 4:268–274Google Scholar
  35. 35.
    Rebelo AR, Archer AJ, Chen X, Liu C, Yang G, Liu Y (2018) Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties. Sci Technol Adv Mater 19(1):203–211Google Scholar
  36. 36.
    Campano C, Balea A, Blanco A, Negro C (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23(1):57–91Google Scholar
  37. 37.
    Jahan F, Kumar V, Rawat G, Saxena RK (2012) Production of microbial cellulose by a bacterium isolated from fruit. Appl Biochem Biotechnol 167(5):1157–1171Google Scholar
  38. 38.
    Semjonovs P, Ruklisha M, Paegle L, Saka M, Treimane R, Skute M, Rozenberga L, Vikele L, Sabovics M, Cleenwerck I (2017) Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha. Appl Microbiol Biotechnol 101(3):1003–1012Google Scholar
  39. 39.
    AydIn YA, Aksoy ND (2014) Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Appl Microbiol Biotechnol 98(3):1065–1075Google Scholar
  40. 40.
    Karahan AG, Akoǧlu A, Çakir I, Kart A, Lütfü Çakmakçi M, Uygun A, Göktepe F (2011) Some properties of bacterial cellulose produced by new native strain Gluconacetobacter sp. A06O2 obtained from turkish vinegar. J Appl Polym Sci 121(3):1823–1831Google Scholar
  41. 41.
    Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11(1):123–129Google Scholar
  42. 42.
    Valera MJ, Torija MJ, Mas A, Mateo E (2015) Cellulose production and cellulose synthase gene detection in acetic acid bacteria. Appl Microbiol Biotechnol 99(3):1349–1361Google Scholar
  43. 43.
    Brenner DJ, Staley JT (2005) Bergey’s manual of systematic bacteriology. In: Garrity G, Brenner DJ, Krieg NR, Staley JR (eds) The proteobacteria. Part B, the gammaproteobacteria, (Vol. 2, Springer, Berlin)Google Scholar
  44. 44.
    Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794Google Scholar
  45. 45.
    Millet V, Lonvaud-Funel A (2000) The viable but non-culturable state of wine micro-organisms during storage. Lett Appl Microbiol 30(2):136–141Google Scholar
  46. 46.
    Nguyen VT, Flanagan B, Gidley MJ, Dykes GA (2008) Characterization of cellulose production by a Gluconacetobacter xylinus strain from kombucha. Curr Microbiol 57(5):449–453Google Scholar
  47. 47.
    Suwanposri A, Yukphan P, Yukphan P, Yamada Y, Ochaikul D (2013) Identification and biocellulose production of Gluconacetobacter strains isolated from tropical fruits in Thailand. Maejo Int J Sci Technol 7(1):70–82Google Scholar
  48. 48.
    Andrés-Barrao C, Falquet L, Calderon-Copete SP, Descombes P, Ortega Pérez R, Barja F (2011) Genome sequences of the high-acetic acid-resistant bacteria Gluconacetobacter europaeus LMG 18890T and G. europaeus LMG 18494 (reference strains), G. europaeus 5P3, and Gluconacetobacter oboediens 174Bp2 (isolated from vinegar). J Bacteriol 193(10):2670–2671Google Scholar
  49. 49.
    Sievers M, Swings J (2005) In: Garrity G (ed) Family Acetobacteraceae. Bergey’s manual of systematic bacteriology, 2nd Edn. Springer, Boston, pp 41–95Google Scholar
  50. 50.
    Andrés-Barrao C, Benagli C, Chappuis M, Ortega Pérez R, Tonolla M, Barja F (2013) Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting. Syst Appl Microbiol 36(2):75–81Google Scholar
  51. 51.
    Boesch C, Trček J, Sievers M, Teuber M (1998) Acetobacter intermedius sp. nov. Syst Appl Microbiol 21(2):220–229Google Scholar
  52. 52.
    Molina-Ramírez C, Castro M, Osorio M, Torres-Taborda M, Gómez B, Zuluaga R, Gómez C, Gañán P, Rojas OJ, Castro C (2017) Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials 10(6):639Google Scholar
  53. 53.
    Castro C, Zuluaga R, Álvarez C, Putaux J-L, Caro G, Rojas OJ, Mondragon I, Gañán P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89(4):1033–1037Google Scholar
  54. 54.
    Embuscado ME, Marks JS, BeMiller JN (1994) Bacterial cellulose. II. Optimization of cellulose production by Acetobacter xylinum through response surface methodology. Food Hydrocoll 8(5):419–430Google Scholar
  55. 55.
    Mamlouk D, Gullo M (2013) Acetic Acid bacteria: physiology and carbon sources oxidation. Indian J Microbiol 53(4):377–384Google Scholar
  56. 56.
    Yang Y, Jia J, Xing J, Chen J, Lu S (2013) Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26. Carbohydr Polym 92(2):2012–2017Google Scholar
  57. 57.
    Lin SP, Huang YH, Hsu KD, Lai YJ, Chen YK, Cheng KC (2016) Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice. Carbohydr Polym 151:827–833Google Scholar
  58. 58.
    Tyagi N, Suresh S (2012) Isolation and characterization of cellulose producing bacterial strain from orange pulp. Adv Mater Res 626:475–479Google Scholar
  59. 59.
    Tyagi N, Suresh S (2016) Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization. J Clean Prod 112:71–80Google Scholar
  60. 60.
    Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 04(02):1–10Google Scholar
  61. 61.
    Keshk SM, Sameshima K (2006) Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture. Enzyme Microb Technol 40(1):4–8Google Scholar
  62. 62.
    Kuo C-H, Chen J-H, Liou B-K, Lee C-K (2016) Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocoll 53:98–103Google Scholar
  63. 63.
    Shigematsu T, Takamine K, Kitazato M, Morita T, Naritomi T, Morimura S, Kida K (2005) Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. J Biosci Bioeng 99(4):415–422Google Scholar
  64. 64.
    Castro C, Zuluaga R, Putaux J-L, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84(1):96–102Google Scholar
  65. 65.
    Moosavi-Nasab M, Yousefi A (2011) Biotechnological production of cellulose by Gluconacetobacter xylinus from agricultural waste. Iran J Biotechnol 9(2):94–101Google Scholar
  66. 66.
    Rani MU, Rastogi NK, Anu Appaiah KA (2011) Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract—an agro-industry waste. J Microbiol Biotechnol 21(7):739–745Google Scholar
  67. 67.
    Tolvaj L, Faix O (1995) Artificial ageing of wood monitored by DRIFT spectroscopy and CIE L*a*b* Color measurements 1. Effect of UV light. Holzforschung 49(5):397–404Google Scholar
  68. 68.
    Jaušovec D, Vogrinčič R, Kokol V (2015) Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation. Carbohydr Polym 116:74–85Google Scholar
  69. 69.
    El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghwas DE (2008) Production and characterization of economical bacterial cellulose. BioResources 3(4):1196–1217Google Scholar
  70. 70.
    French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896Google Scholar
  71. 71.
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941Google Scholar
  72. 72.
    Ahvenainen P, Kontro I, Svedström K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23(2):1073–1086Google Scholar
  73. 73.
    Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 21(2):545–554Google Scholar
  74. 74.
    Ruka DR, Simon GP, Dean KM (2012) Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr Polym 89(2):613–622Google Scholar
  75. 75.
    Reiniati I, Hrymak AN, Margaritis A (2017) Kinetics of cell growth and crystalline nanocellulose production by Komagataeibacter xylinus. Biochem Eng J 127:21–31Google Scholar
  76. 76.
    Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10Google Scholar
  77. 77.
    Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2014) Recent advances in bacterial cellulose. Cellulose 21(1):1–30Google Scholar
  78. 78.
    Costa AFS, Almeida FCG, Vinhas GM, Sarubbo LA (2017) Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front Microbiol 8(OCT):2027Google Scholar
  79. 79.
    Cousins S, Brown R (1997) X-ray diffraction and ultrastructural analyses of dye-altered celluloses support van der Waals forces as the initial step in cellulose crystallization. Polymer 38:897–902Google Scholar
  80. 80.
    Huang H-C, Chen L-C, Lin S-B, Hsu C-P, Chen H-H (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol 101(15):6084–6091Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Genetics, Microbiology and Statistics, Faculty of BiologyUniversitat de BarcelonaBarcelonaSpain
  2. 2.CELBIOTECH_Paper Engineering Research GroupUniversitat Politècnica de Catalunya_BarcelonaTechTerrassaSpain
  3. 3.Institute of Nanoscience and Nanotechnology (IN2UB)Universitat de BarcelonaBarcelonaSpain

Personalised recommendations