Surface-Modified Cellulose Nanofibers-graft-poly(lactic acid)s Made by Ring-Opening Polymerization of l-Lactide
Abstract
Highly crystalline cellulose nanofibers with a high density of carboxylate groups only on the surfaces were prepared from both softwood and non-wood cellulose pulp. The preparation method used 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation of native cellulose fibrils in an aqueous TEMPO/NaBr/NaClO system and subsequent postoxidation with NaClO2 in acetate buffer (pH 4.8). The TEMPO-oxidized cellulose nanofibers (TOCNs) possessed a carboxylate content of 1.7 mmol g−1 and a crystallinity of 67–69% with a crystallite size of ∼3 nm. The TOCNs were used to produce highly crystalline TOCN-graft-poly(lactic acid) (PLA) nanocomposites via ring-opening polymerization of l-lactide in a polar aprotic solvent. Effects of the reaction temperature and the molar ratio of l-lactide to carboxylate surface groups, on the efficiency of surface grafting were investigated to potentially improve the crystallinity and thermal properties of the nanocomposites. The crystallinity of TOCN-g-PLA products was 59–66% greater than the crystallinity of neat PLA.
Keywords
Cellulose nanofibers Nanocomposites Cellulose-poly(lactic acid) composites TEMPO-mediated oxidation Ring-opening polymerizationAbbreviations
- BBP
Bagasse bleached pulp
- CDA
Cellulose diacetate
- CDA-g-PLAs
Cellulose diacetate-graft-poly(lactic acid)s
- CNC
Cellulose nanocrystals
- Cr
Crystallinity (%)
- CS
Crystallite size (nm)
- DMSO
Dimethyl sulfoxide
- DSC
Differential scanning calorimetry
- DTGA
Derivative thermogravimetric analysis
- Iam
Minimum height (i.e. the plateau) between peaks at 200 and 110 planes
- I200
Intensity of diffraction peak at 200 plane of crystalline contribution
- K
Dimensionless crystal shape factor
- LA
l-lactide
- N
Molarity (M) of NaOH solution
- NMR
Nuclear magnetic resonance
- PTFE
Polytetrafluoroethylene
- PLA
Polylactic acid
- QP1
Production rate of carbonyl groups (C=O) through ester formation (h−1)
- QP2
Production rate of carbonyl groups (C=O) through PLA formation (h−1)
- Qs
Consumption rate of carboxylate groups (COO−) of TOCN–COOLi (h−1)
- R
Molar ratio of l-lactide to carboxylate content of TOCNs
- ROP
Ring-opening polymerization
- SBKP
Softwood bleached kraft pulp
- SD
Standard deviation
- SEM
Scanning electron microscopy
- Tdeg
Degradation temperature
- TEMPO
2,2,6,6-Tetramethylpiperidine-1-oxyl
- Tg
Glass transition temperature
- Tm
Melting temperature
- TGA
Thermogravimetric analysis
- TOCNs
TEMPO-oxidized cellulose nanofibrils
- TOCNs–COONa
TOCNs sodium salts
- TOCNs–COOLi
TOCNs lithium salts
- TOCN-g-PLA
TEMPO-oxidized cellulose nanofibers-graft-poly(lactic acid)s
- V
Volume (mL) of alkali consumed
- W
Mass (g) of dried TOCNs–COONa sample
- YP1/S
Yield of ester carbonyl groups on carboxylate groups
- YP2/S
Yield of PLA carbonyl groups on carboxylate groups
Greek letters
- β
Diffraction peak width in radians
- θ
Bragg angle corresponding to the 200 plane
- λ
Wavelength (nm) of the incident X-ray
Notes
Acknowledgements
This research was supported by a Research and Researchers for Industries (RRI) PhD Scholarship awarded by the Thailand Research Fund under the Office of the Prime Minister, Royal Thai Government (code: PHD57I0037), and PTT Global Chemical Public Company Limited, Thailand. We are grateful to Assistant Professor Dr Shingo Yokota for advice on FTIR measurements.
References
- 1.Avinc O, Khoddami A (2009) Overview of poly(lactic acid) (PLA) fibre. Part I: production, properties, performance, environmental impact, and end-use applications of poly(lactic acid) fibres. Fibre Chem 41(6):391–399CrossRefGoogle Scholar
- 2.Arrieta M, Fortunati E, Dominici F, Rayón E, López J, Kenny J (2014) Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr Polym 107:16–24CrossRefGoogle Scholar
- 3.Fujisawa S, Zhang J, Saito T, Iwata T, Isogai A (2014) Cellulose nanofibrils as templates for the design of poly(L-lactide)-nucleating surfaces. Polymer 55:2937–2942CrossRefGoogle Scholar
- 4.Wang T, Drzal LT (2012) Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach. ACS Appl Mater Interfaces 4:5079–5085CrossRefGoogle Scholar
- 5.Puangsin B, Yang Q, Saito T, Isogai A (2013) Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources. Int J Biol Macromol 59:208–213CrossRefGoogle Scholar
- 6.Fujisawa S, Saito T, Kimura S, Iwata T, Isogai A (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 14:1541–1546CrossRefGoogle Scholar
- 7.Chen P-Y, Lian H-Y, Shih Y-F, Chen-Wei S-M (2018) Chemically functionalized plant fibers and carbon nanotubes for high compatibility and reinforcement in polylactic acid (PLA) composite. J Polym Environ 26:1962–1968CrossRefGoogle Scholar
- 8.Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRefGoogle Scholar
- 9.Kuramae R, Saito T, Isogai A (2014) TEMPO-oxidized cellulose nanofibrils prepared from various plant holocelluloses. React Funct Polym 85:126–133CrossRefGoogle Scholar
- 10.El-Gendy A, Abou-Zeid RE, Salama A, Diab MA, El-Sakhawy M (2017) TEMPO-oxidized cellulose nanofibers/polylactic acid/TiO2 as antibacterial bionanocomposite for active packaging. Egypt J Chem 60:1007–1014CrossRefGoogle Scholar
- 11.Miao C, Hamad WY (2016) In-situ polymerized cellulose nanocrystals (CNC)-poly(L-lactide) (PLLA) nanomaterials and applications in nanocomposite processing. Carbohydr Polym 153:549–558CrossRefGoogle Scholar
- 12.Teramoto Y, Nishio Y (2003) Cellulose diacetate-graft-poly(lactic acid)s: synthesis of wide-ranging compositions and their thermal and mechanical properties. Polymer 44:2701–2709CrossRefGoogle Scholar
- 13.Mayumi A, Kitaoka T, Wariishi H (2006) Partial substitution of cellulose by ring-opening esterification of cyclic esters in a homogeneous system. J Appl Polym Sci 102:4358–4364CrossRefGoogle Scholar
- 14.Yu Y, Storti G, Morbidelli M (2009) Ring-opening polymerization of L,L-lactide: kinetic and modeling study. Macromolecules 42:8187–8197CrossRefGoogle Scholar
- 15.Kaihara S, Matsumura S, Mikos AG, Fisher JP (2007) Synthesis of poly(L-lactide) and polyglycolide by ring-opening polymerization. Nat Protoc 2:2767–2771CrossRefGoogle Scholar
- 16.Ohya Y, Takamido S, Nagahama K, Ouchi T, Katoono R, Yui N (2009) Polyrotaxane composed of poly-L-lactide and α-cyclodextrin exhibiting protease-triggered hydrolysis. Biomacromolecules 10:2261–2267CrossRefGoogle Scholar
- 17.Chuensangjun C, Kitaoka T, Chisti Y, Sirisansaneeyakul S (2018) Optimal ring-opening polymerization for producing surface-modified cellulose nanofibers-graft-poly(lactic acid)s. New Biotechnol 44S:S105. Presented at the 18th European Congress on Biotechnology (ECB 2018), Geneva, Switzerland, July 1–4, 2018Google Scholar
- 18.Kricheldorf HR, Kreiser-Saunders I, Boettcher C (1995) Polylactones: 31. Sn(II)octoate-initiated polymerization of L-lactide: a mechanistic study. Polymer 36:1253–1259CrossRefGoogle Scholar
- 19.Fan Y, Saito T, Isogai A (2008) Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromolecules 9:192–198CrossRefGoogle Scholar
- 20.Lizundia E, Vilas JL, León LM (2015) Crystallization, structural relaxation and thermal degradation in poly(L-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr Polym 123:256–265CrossRefGoogle Scholar
- 21.Kobe R, Iwamoto S, Endo T, Yoshitani K, Teramoto Y (2016) Stretchable composite hydrogels incorporating modified cellulose nanofiber with dispersibility and polymerizability: mechanical property control and nanofiber orientation. Polymer 97:480–486CrossRefGoogle Scholar
- 22.Luiz de Paula E, Roig F, Mas A, Habas J-P, Mano V, Pereira FV, Robin J-J (2016) Effect of surface-grafted cellulose nanocrystals on the thermal and mechanical properties of PLLA based nanocomposites. Eur Polym J 84:173–187CrossRefGoogle Scholar
- 23.Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583CrossRefGoogle Scholar
- 24.Silva Perez D, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4:1417–1425CrossRefGoogle Scholar
- 25.Michael DG, Croteau S, Hazlett JD, Kutowy O (1990) Synthesis and characterization of carboxylated polysulfones. Br Polym J 23:29–39CrossRefGoogle Scholar
- 26.Bulota M, Tanpichai S, Hughes M, Eichhorn SJ (2012) Micromechanics of TEMPO-oxidized fibrillated cellulose composites. ACS Appl Mater Interfaces 4:331–337CrossRefGoogle Scholar
- 27.Nikolic L, Ristic I, Adnadjevic B, Nikolic V, Jovanovic J, Stankovic M (2010) Novel microwave-assisted synthesis of poly(D,L-lactide): the influence of monomer/initiator molar ratio on the product properties. Sensors 10:5063–5073CrossRefGoogle Scholar
- 28.Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864CrossRefGoogle Scholar
- 29.Gonçalves CMB, Coutinho JAP, Marrucho IM (2010) In: Auras R, Lim LT, Selke SEM, Tsuji H (eds) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, Hoboken, p 97CrossRefGoogle Scholar
- 30.Kister G, Cassanas G, Vert M (1998) Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer 39:267–273CrossRefGoogle Scholar
- 31.Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRefGoogle Scholar
- 32.Cao Y, Tan H (2005) Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme Microb Technol 36:314–317CrossRefGoogle Scholar
- 33.Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989CrossRefGoogle Scholar
- 34.Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849CrossRefGoogle Scholar
- 35.Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by tempo-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRefGoogle Scholar
- 36.Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley, HobokenCrossRefGoogle Scholar
- 37.He J, Liu Z, Li H-Y, Wang G-H, Pu J-W (2007) Solubility of wood-cellulose in LiCl/DMAC solvent system. For Stud China 9:217–220CrossRefGoogle Scholar
- 38.Kowalski A, Duda A, Penczek S (2000) Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate. 3. Polymerization of L,L-dilactide. Macromolecules 33:7359–7370CrossRefGoogle Scholar
- 39.Quynh TM, Mai HH, Lan PN (2013) Stereocomplexation of low molecular weight poly(L-lactic acid) and high molecular weight poly(D-lactic acid), radiation crosslinking PLLA/PDLA stereocomplexes and their characterization. Radiat Phys Chem 83:105–110CrossRefGoogle Scholar
- 40.Duevel RV, Corn RM (1992) Amide and ester surface attachment reactions for alkanethiol monolayers at gold surfaces as studied by polarization modulation Fourier transform infrared spectroscopy. Anal Chem 64:337–342CrossRefGoogle Scholar
- 41.Noël M, Fredon E, Mougel E, Masson D, Masson E, Delmotte L (2009) Lactic acid/wood-based composite material. Part 1: synthesis and characterization. Bioresour Technol 100:4711–4716CrossRefGoogle Scholar
- 42.Monga S, Kaushik A, Gupta B (2016) Optimization of process parameters for controlled ring-opening polymerization of lactide to produce poly(L-lactide) diols as precursor for polyurethanes. Polym-Plast Technol Eng 55(17):1819–1830CrossRefGoogle Scholar
- 43.Stridsberg KM, Ryner M, Albertsson A-C (2002) Controlled ring-opening polymerization: polymers with designed macromolecular architecture. Adv Polym Sci 157:41–65CrossRefGoogle Scholar
- 44.Udoetok IA, Wilson LD, Headley JV (2018) Ultra-sonication assisted cross-linking of cellulose polymers. Ultrason Sonochem 42:567–576CrossRefGoogle Scholar
- 45.Notley SM, Wågberg L (2005) Morphology of modified regenerated model cellulose II surfaces studied by atomic force microscopy: effect of carboxymethylation and heat treatment. Biomacromolecules 6:1586–1591CrossRefGoogle Scholar
- 46.Gamelas JAF, Pedrosa J, Lourenço AF, Mutjé P, González I, Chinga-Carrasco G, Singh G, Ferreira PJT (2015) On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment. Micron 72:28–33CrossRefGoogle Scholar
- 47.Aquino R, Veronese G, Carvalho AJF, Barbu E, Amaral AC, Trovatti E (2016) The potential of TEMPO-oxidized nanofibrillar cellulose beads for cell delivery applications. Cellulose 23:3399–3405CrossRefGoogle Scholar
- 48.Peng Y, Gardner DJ, Han Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102CrossRefGoogle Scholar
- 49.Erbetta CAC, Alves RJ, Resende JM, Freitas RFS, Sousa RG (2012) Synthesis and characterization of poly(D,L-lactide-co-glycolide) copolymer. J Biomater Nanobiotechnol 3:208–225CrossRefGoogle Scholar
- 50.Marais A, Kochumalayil JJ, Nilsson C, Fogelström L, Gamstedt EK (2012) Toward an alternative compatibilizer for PLA/cellulose composites: grafting of xyloglucan with PLA. Carbohydr Polym 89:1038–1043CrossRefGoogle Scholar
- 51.Hatakeyama T, Nakamura K, Hatakeyama H (1982) Studies on heat capacity of cellulose and lignin by differential scanning calorimetry. Polymer 23:1801–1804CrossRefGoogle Scholar
- 52.Gürdağ G, Sarmad S (2013) In: Kalia S, Sabaa MW (eds) Polysaccharide based graft copolymers. Springer, Berlin, p 15CrossRefGoogle Scholar
- 53.Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508CrossRefGoogle Scholar
- 54.Fukuzumi H, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93:172–177CrossRefGoogle Scholar
- 55.Koval’aková M, Olčák D, Hronský V, Vrábel P, Fričová O, Chodák I, Alexy P, Sučik G (2016) Morphology and molecular mobility of plasticized polylactic acid studied using solid-state 13C- and 1H-NMR spectroscopy. J Appl Polym Sci 133:43517Google Scholar
- 56.Yeh J-T, Tsou C-H, Lu W, Li Y-M, Xiao HW, Huang CY, Chen K-N, Wu C-S, Chai W-L (2010) Compatible and tearing properties of poly(lactic acid)/poly(ethylene glutaric-co-terephthalate) copolyester blends. J Polym Sci B 48:913–920CrossRefGoogle Scholar
- 57.Robles E, Salaberria AM, Herrera R, Fernandes SCM, Labidi J (2016) Self-bonded composite films based on cellulose nanofibers and chitin nanocrystals as antifungal materials. Carbohydr Polym 144:41–49CrossRefGoogle Scholar
- 58.Tonoli GHD, Holtman KM, Glenn G, Fonseca AS, Wood D, Williams T, Sa VA, Torres L, Klamczynski A, Orts WJ (2016) Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing. Cellulose 23:1239–1256CrossRefGoogle Scholar
- 59.Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre J-M, Seguela R (2011) Macromolecules 44:6496–6502CrossRefGoogle Scholar
- 60.Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48:6855–6866CrossRefGoogle Scholar
- 61.Srithep Y, Nealey P, Turng L-S (2013) Effects of annealing time and temperature on the crystallinity and heat resistance behavior of injection-molded poly(lactic acid). Polym Eng Sci 53:580–588CrossRefGoogle Scholar
- 62.Choo K, Ching YC, Chuah CH, Julai S, Liou N-S (2016) Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials 9:644CrossRefGoogle Scholar