Surface-Modified Cellulose Nanofibers-graft-poly(lactic acid)s Made by Ring-Opening Polymerization of l-Lactide

  • Chaniga Chuensangjun
  • Kyohei Kanomata
  • Takuya Kitaoka
  • Yusuf Chisti
  • Sarote SirisansaneeyakulEmail author
Original paper


Highly crystalline cellulose nanofibers with a high density of carboxylate groups only on the surfaces were prepared from both softwood and non-wood cellulose pulp. The preparation method used 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation of native cellulose fibrils in an aqueous TEMPO/NaBr/NaClO system and subsequent postoxidation with NaClO2 in acetate buffer (pH 4.8). The TEMPO-oxidized cellulose nanofibers (TOCNs) possessed a carboxylate content of 1.7 mmol g−1 and a crystallinity of 67–69% with a crystallite size of ∼3 nm. The TOCNs were used to produce highly crystalline TOCN-graft-poly(lactic acid) (PLA) nanocomposites via ring-opening polymerization of l-lactide in a polar aprotic solvent. Effects of the reaction temperature and the molar ratio of l-lactide to carboxylate surface groups, on the efficiency of surface grafting were investigated to potentially improve the crystallinity and thermal properties of the nanocomposites. The crystallinity of TOCN-g-PLA products was 59–66% greater than the crystallinity of neat PLA.


Cellulose nanofibers Nanocomposites Cellulose-poly(lactic acid) composites TEMPO-mediated oxidation Ring-opening polymerization 



Bagasse bleached pulp


Cellulose diacetate


Cellulose diacetate-graft-poly(lactic acid)s


Cellulose nanocrystals


Crystallinity (%)


Crystallite size (nm)


Dimethyl sulfoxide


Differential scanning calorimetry


Derivative thermogravimetric analysis


Minimum height (i.e. the plateau) between peaks at 200 and 110 planes


Intensity of diffraction peak at 200 plane of crystalline contribution


Dimensionless crystal shape factor




Molarity (M) of NaOH solution


Nuclear magnetic resonance




Polylactic acid


Production rate of carbonyl groups (C=O) through ester formation (h−1)


Production rate of carbonyl groups (C=O) through PLA formation (h−1)


Consumption rate of carboxylate groups (COO) of TOCN–COOLi (h−1)


Molar ratio of l-lactide to carboxylate content of TOCNs


Ring-opening polymerization


Softwood bleached kraft pulp


Standard deviation


Scanning electron microscopy


Degradation temperature




Glass transition temperature


Melting temperature


Thermogravimetric analysis


TEMPO-oxidized cellulose nanofibrils


TOCNs sodium salts


TOCNs lithium salts


TEMPO-oxidized cellulose nanofibers-graft-poly(lactic acid)s


Volume (mL) of alkali consumed


Mass (g) of dried TOCNs–COONa sample


Yield of ester carbonyl groups on carboxylate groups


Yield of PLA carbonyl groups on carboxylate groups

Greek letters


Diffraction peak width in radians


Bragg angle corresponding to the 200 plane


Wavelength (nm) of the incident X-ray



This research was supported by a Research and Researchers for Industries (RRI) PhD Scholarship awarded by the Thailand Research Fund under the Office of the Prime Minister, Royal Thai Government (code: PHD57I0037), and PTT Global Chemical Public Company Limited, Thailand. We are grateful to Assistant Professor Dr Shingo Yokota for advice on FTIR measurements.


  1. 1.
    Avinc O, Khoddami A (2009) Overview of poly(lactic acid) (PLA) fibre. Part I: production, properties, performance, environmental impact, and end-use applications of poly(lactic acid) fibres. Fibre Chem 41(6):391–399CrossRefGoogle Scholar
  2. 2.
    Arrieta M, Fortunati E, Dominici F, Rayón E, López J, Kenny J (2014) Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr Polym 107:16–24CrossRefGoogle Scholar
  3. 3.
    Fujisawa S, Zhang J, Saito T, Iwata T, Isogai A (2014) Cellulose nanofibrils as templates for the design of poly(L-lactide)-nucleating surfaces. Polymer 55:2937–2942CrossRefGoogle Scholar
  4. 4.
    Wang T, Drzal LT (2012) Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach. ACS Appl Mater Interfaces 4:5079–5085CrossRefGoogle Scholar
  5. 5.
    Puangsin B, Yang Q, Saito T, Isogai A (2013) Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources. Int J Biol Macromol 59:208–213CrossRefGoogle Scholar
  6. 6.
    Fujisawa S, Saito T, Kimura S, Iwata T, Isogai A (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 14:1541–1546CrossRefGoogle Scholar
  7. 7.
    Chen P-Y, Lian H-Y, Shih Y-F, Chen-Wei S-M (2018) Chemically functionalized plant fibers and carbon nanotubes for high compatibility and reinforcement in polylactic acid (PLA) composite. J Polym Environ 26:1962–1968CrossRefGoogle Scholar
  8. 8.
    Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRefGoogle Scholar
  9. 9.
    Kuramae R, Saito T, Isogai A (2014) TEMPO-oxidized cellulose nanofibrils prepared from various plant holocelluloses. React Funct Polym 85:126–133CrossRefGoogle Scholar
  10. 10.
    El-Gendy A, Abou-Zeid RE, Salama A, Diab MA, El-Sakhawy M (2017) TEMPO-oxidized cellulose nanofibers/polylactic acid/TiO2 as antibacterial bionanocomposite for active packaging. Egypt J Chem 60:1007–1014CrossRefGoogle Scholar
  11. 11.
    Miao C, Hamad WY (2016) In-situ polymerized cellulose nanocrystals (CNC)-poly(L-lactide) (PLLA) nanomaterials and applications in nanocomposite processing. Carbohydr Polym 153:549–558CrossRefGoogle Scholar
  12. 12.
    Teramoto Y, Nishio Y (2003) Cellulose diacetate-graft-poly(lactic acid)s: synthesis of wide-ranging compositions and their thermal and mechanical properties. Polymer 44:2701–2709CrossRefGoogle Scholar
  13. 13.
    Mayumi A, Kitaoka T, Wariishi H (2006) Partial substitution of cellulose by ring-opening esterification of cyclic esters in a homogeneous system. J Appl Polym Sci 102:4358–4364CrossRefGoogle Scholar
  14. 14.
    Yu Y, Storti G, Morbidelli M (2009) Ring-opening polymerization of L,L-lactide: kinetic and modeling study. Macromolecules 42:8187–8197CrossRefGoogle Scholar
  15. 15.
    Kaihara S, Matsumura S, Mikos AG, Fisher JP (2007) Synthesis of poly(L-lactide) and polyglycolide by ring-opening polymerization. Nat Protoc 2:2767–2771CrossRefGoogle Scholar
  16. 16.
    Ohya Y, Takamido S, Nagahama K, Ouchi T, Katoono R, Yui N (2009) Polyrotaxane composed of poly-L-lactide and α-cyclodextrin exhibiting protease-triggered hydrolysis. Biomacromolecules 10:2261–2267CrossRefGoogle Scholar
  17. 17.
    Chuensangjun C, Kitaoka T, Chisti Y, Sirisansaneeyakul S (2018) Optimal ring-opening polymerization for producing surface-modified cellulose nanofibers-graft-poly(lactic acid)s. New Biotechnol 44S:S105. Presented at the 18th European Congress on Biotechnology (ECB 2018), Geneva, Switzerland, July 1–4, 2018Google Scholar
  18. 18.
    Kricheldorf HR, Kreiser-Saunders I, Boettcher C (1995) Polylactones: 31. Sn(II)octoate-initiated polymerization of L-lactide: a mechanistic study. Polymer 36:1253–1259CrossRefGoogle Scholar
  19. 19.
    Fan Y, Saito T, Isogai A (2008) Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromolecules 9:192–198CrossRefGoogle Scholar
  20. 20.
    Lizundia E, Vilas JL, León LM (2015) Crystallization, structural relaxation and thermal degradation in poly(L-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr Polym 123:256–265CrossRefGoogle Scholar
  21. 21.
    Kobe R, Iwamoto S, Endo T, Yoshitani K, Teramoto Y (2016) Stretchable composite hydrogels incorporating modified cellulose nanofiber with dispersibility and polymerizability: mechanical property control and nanofiber orientation. Polymer 97:480–486CrossRefGoogle Scholar
  22. 22.
    Luiz de Paula E, Roig F, Mas A, Habas J-P, Mano V, Pereira FV, Robin J-J (2016) Effect of surface-grafted cellulose nanocrystals on the thermal and mechanical properties of PLLA based nanocomposites. Eur Polym J 84:173–187CrossRefGoogle Scholar
  23. 23.
    Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583CrossRefGoogle Scholar
  24. 24.
    Silva Perez D, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4:1417–1425CrossRefGoogle Scholar
  25. 25.
    Michael DG, Croteau S, Hazlett JD, Kutowy O (1990) Synthesis and characterization of carboxylated polysulfones. Br Polym J 23:29–39CrossRefGoogle Scholar
  26. 26.
    Bulota M, Tanpichai S, Hughes M, Eichhorn SJ (2012) Micromechanics of TEMPO-oxidized fibrillated cellulose composites. ACS Appl Mater Interfaces 4:331–337CrossRefGoogle Scholar
  27. 27.
    Nikolic L, Ristic I, Adnadjevic B, Nikolic V, Jovanovic J, Stankovic M (2010) Novel microwave-assisted synthesis of poly(D,L-lactide): the influence of monomer/initiator molar ratio on the product properties. Sensors 10:5063–5073CrossRefGoogle Scholar
  28. 28.
    Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864CrossRefGoogle Scholar
  29. 29.
    Gonçalves CMB, Coutinho JAP, Marrucho IM (2010) In: Auras R, Lim LT, Selke SEM, Tsuji H (eds) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, Hoboken, p 97CrossRefGoogle Scholar
  30. 30.
    Kister G, Cassanas G, Vert M (1998) Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer 39:267–273CrossRefGoogle Scholar
  31. 31.
    Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRefGoogle Scholar
  32. 32.
    Cao Y, Tan H (2005) Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme Microb Technol 36:314–317CrossRefGoogle Scholar
  33. 33.
    Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989CrossRefGoogle Scholar
  34. 34.
    Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849CrossRefGoogle Scholar
  35. 35.
    Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by tempo-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRefGoogle Scholar
  36. 36.
    Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley, HobokenCrossRefGoogle Scholar
  37. 37.
    He J, Liu Z, Li H-Y, Wang G-H, Pu J-W (2007) Solubility of wood-cellulose in LiCl/DMAC solvent system. For Stud China 9:217–220CrossRefGoogle Scholar
  38. 38.
    Kowalski A, Duda A, Penczek S (2000) Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate. 3. Polymerization of L,L-dilactide. Macromolecules 33:7359–7370CrossRefGoogle Scholar
  39. 39.
    Quynh TM, Mai HH, Lan PN (2013) Stereocomplexation of low molecular weight poly(L-lactic acid) and high molecular weight poly(D-lactic acid), radiation crosslinking PLLA/PDLA stereocomplexes and their characterization. Radiat Phys Chem 83:105–110CrossRefGoogle Scholar
  40. 40.
    Duevel RV, Corn RM (1992) Amide and ester surface attachment reactions for alkanethiol monolayers at gold surfaces as studied by polarization modulation Fourier transform infrared spectroscopy. Anal Chem 64:337–342CrossRefGoogle Scholar
  41. 41.
    Noël M, Fredon E, Mougel E, Masson D, Masson E, Delmotte L (2009) Lactic acid/wood-based composite material. Part 1: synthesis and characterization. Bioresour Technol 100:4711–4716CrossRefGoogle Scholar
  42. 42.
    Monga S, Kaushik A, Gupta B (2016) Optimization of process parameters for controlled ring-opening polymerization of lactide to produce poly(L-lactide) diols as precursor for polyurethanes. Polym-Plast Technol Eng 55(17):1819–1830CrossRefGoogle Scholar
  43. 43.
    Stridsberg KM, Ryner M, Albertsson A-C (2002) Controlled ring-opening polymerization: polymers with designed macromolecular architecture. Adv Polym Sci 157:41–65CrossRefGoogle Scholar
  44. 44.
    Udoetok IA, Wilson LD, Headley JV (2018) Ultra-sonication assisted cross-linking of cellulose polymers. Ultrason Sonochem 42:567–576CrossRefGoogle Scholar
  45. 45.
    Notley SM, Wågberg L (2005) Morphology of modified regenerated model cellulose II surfaces studied by atomic force microscopy: effect of carboxymethylation and heat treatment. Biomacromolecules 6:1586–1591CrossRefGoogle Scholar
  46. 46.
    Gamelas JAF, Pedrosa J, Lourenço AF, Mutjé P, González I, Chinga-Carrasco G, Singh G, Ferreira PJT (2015) On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment. Micron 72:28–33CrossRefGoogle Scholar
  47. 47.
    Aquino R, Veronese G, Carvalho AJF, Barbu E, Amaral AC, Trovatti E (2016) The potential of TEMPO-oxidized nanofibrillar cellulose beads for cell delivery applications. Cellulose 23:3399–3405CrossRefGoogle Scholar
  48. 48.
    Peng Y, Gardner DJ, Han Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102CrossRefGoogle Scholar
  49. 49.
    Erbetta CAC, Alves RJ, Resende JM, Freitas RFS, Sousa RG (2012) Synthesis and characterization of poly(D,L-lactide-co-glycolide) copolymer. J Biomater Nanobiotechnol 3:208–225CrossRefGoogle Scholar
  50. 50.
    Marais A, Kochumalayil JJ, Nilsson C, Fogelström L, Gamstedt EK (2012) Toward an alternative compatibilizer for PLA/cellulose composites: grafting of xyloglucan with PLA. Carbohydr Polym 89:1038–1043CrossRefGoogle Scholar
  51. 51.
    Hatakeyama T, Nakamura K, Hatakeyama H (1982) Studies on heat capacity of cellulose and lignin by differential scanning calorimetry. Polymer 23:1801–1804CrossRefGoogle Scholar
  52. 52.
    Gürdağ G, Sarmad S (2013) In: Kalia S, Sabaa MW (eds) Polysaccharide based graft copolymers. Springer, Berlin, p 15CrossRefGoogle Scholar
  53. 53.
    Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508CrossRefGoogle Scholar
  54. 54.
    Fukuzumi H, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93:172–177CrossRefGoogle Scholar
  55. 55.
    Koval’aková M, Olčák D, Hronský V, Vrábel P, Fričová O, Chodák I, Alexy P, Sučik G (2016) Morphology and molecular mobility of plasticized polylactic acid studied using solid-state 13C- and 1H-NMR spectroscopy. J Appl Polym Sci 133:43517Google Scholar
  56. 56.
    Yeh J-T, Tsou C-H, Lu W, Li Y-M, Xiao HW, Huang CY, Chen K-N, Wu C-S, Chai W-L (2010) Compatible and tearing properties of poly(lactic acid)/poly(ethylene glutaric-co-terephthalate) copolyester blends. J Polym Sci B 48:913–920CrossRefGoogle Scholar
  57. 57.
    Robles E, Salaberria AM, Herrera R, Fernandes SCM, Labidi J (2016) Self-bonded composite films based on cellulose nanofibers and chitin nanocrystals as antifungal materials. Carbohydr Polym 144:41–49CrossRefGoogle Scholar
  58. 58.
    Tonoli GHD, Holtman KM, Glenn G, Fonseca AS, Wood D, Williams T, Sa VA, Torres L, Klamczynski A, Orts WJ (2016) Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing. Cellulose 23:1239–1256CrossRefGoogle Scholar
  59. 59.
    Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre J-M, Seguela R (2011) Macromolecules 44:6496–6502CrossRefGoogle Scholar
  60. 60.
    Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48:6855–6866CrossRefGoogle Scholar
  61. 61.
    Srithep Y, Nealey P, Turng L-S (2013) Effects of annealing time and temperature on the crystallinity and heat resistance behavior of injection-molded poly(lactic acid). Polym Eng Sci 53:580–588CrossRefGoogle Scholar
  62. 62.
    Choo K, Ching YC, Chuah CH, Julai S, Liou N-S (2016) Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials 9:644CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biotechnology, Faculty of Agro-IndustryKasetsart UniversityBangkokThailand
  2. 2.King Mongkut’s University of Technology North BangkokBangkokThailand
  3. 3.Department of Agro-Environmental Sciences, Faculty of AgricultureKyushu UniversityFukuokaJapan
  4. 4.School of EngineeringMassey UniversityPalmerston NorthNew Zealand
  5. 5.Center for Advanced Studies in Tropical Natural Resources (CASTNAR)National Research University-Kasetsart University (NRU-KU)BangkokThailand

Personalised recommendations