Starch:Pectin Acidic Sachets Development for Hydroxyapatite Nanoparticles Storage to Improve Phosphorus Release

  • Camila R. Sciena
  • Maria F. dos Santos
  • Francys K. V. Moreira
  • Alfredo R. Sena Neto
  • José M. Marconcini
  • Daniel S. Correa
  • Elaine C. ParisEmail author
Original Paper


The importance of fertilizers in boosting crop production has motivated the development of novel high-performance systems capable of improving the phosphorus release in the soil. For instance, methods capable of increasing the surface area of fertilizer particles and promoting the solubilization of low-solubility compounds, including phosphates, are highly pursued. This study was aimed at synthesizing hydroxyapatite nanoparticles and investigating their solubility in relation to crystallinity, size, and morphology for phosphorous fertilizer applications. To improve the phosphate ions release, the hydroxyapatite nanoparticles were storage in biodegradable sachets composed of thermoplastic starch/pectin blends with different polymer ratios. The results showed that the smallest and less crystalline hydroxyapatite nanoparticles presented the highest solubility. After storage in polymeric thermoplastic starch:pectin sachets, solubility for all samples was greatly improved, enhancing the phosphorus release due to pH decrease, independent on the nanoparticle size, shape, and crystallinity. The results highlight that the use of acidic sachets is a valuable approach for enhancing phosphorus and other macronutrients release from fertilizers with basic surface properties, aiming at increasing agricultural crop productivity.

Graphical Abstract


Hydroxyapatite Starch Sachet Biodegradable Nanoparticles 



The authors thank the financial support given by CNPq, SISNANO/MCTI, CAPES, and AgroNano research network.


  1. 1.
    Tang J, Hong J, Liu Y (2018) J Polym Environ 26:1930CrossRefGoogle Scholar
  2. 2.
    Jia X, Ma ZY, Zhang GX, Hu JM, Liu ZY, Wang HY, Zhou F (2013) J Agric Food Chem 61(12):2919CrossRefGoogle Scholar
  3. 3.
    Treinyte J, Grazuleviciene V, Paleckiene R (2018) J Polym Environ 26:543CrossRefGoogle Scholar
  4. 4.
    Merisko-Liversidge EM, Liversidge GG (2008) Toxicol Pathol 36:43CrossRefGoogle Scholar
  5. 5.
    Haygarth PM, Jarvis SC (1999) Adv Agron 66:195CrossRefGoogle Scholar
  6. 6.
    Haygarth PM, Heathwaite AL, Jarvis SC, Harrod TR (2000) Adv Agron 69:153CrossRefGoogle Scholar
  7. 7.
    Petkova V, Yaneva V (2010) J Therm Anal Calorim 99:179CrossRefGoogle Scholar
  8. 8.
    Pérez-López R, Macías F, Cánovas CR, Sarmiento AM, Pérez-Moreno SM (2016) Sci Total Environ 553:42CrossRefGoogle Scholar
  9. 9.
    Hart MR, Quin BF, Nguyen ML (2004) J Environ Qual 33:1954Google Scholar
  10. 10.
    Mihajlovic M, Perisic N, Pezo L, Stojanovic M, Milojkovic J, Lopicic Z, Petrovic M (2014) J Agric Food Chem 62:9965CrossRefGoogle Scholar
  11. 11.
    Rajan SSS, Watkinson JH, Sinclair AG (1996) Adv Agronl 57:77CrossRefGoogle Scholar
  12. 12.
    Welch SA, Taunton AE, Banfield JF (2002) Geomicrobiol J 19(3):343CrossRefGoogle Scholar
  13. 13.
    Kwon GS (2008) Nanotechnology in drug delivery. Springer, New YorkGoogle Scholar
  14. 14.
    Wei X, Yates MZ (2012) Chem Mat 24:1738CrossRefGoogle Scholar
  15. 15.
    Montalvo D, McLaughlin MJ, Degryse F (2015) Soil Sci Soc Am J 79:551CrossRefGoogle Scholar
  16. 16.
    Giroto AS, Fidelis SC, Ribeiro C (2015) Rsc Adv 5:104179CrossRefGoogle Scholar
  17. 17.
    Liu RQ, Lal R (2014) Sci Rep 4:6Google Scholar
  18. 18.
    Liu J, Ye X, Wang H, Zhu M,  Wang B, Yan H (2003) Ceram Int 29(6):629CrossRefGoogle Scholar
  19. 19.
    de Oliveira MAR, Paris EC, Ribeiro C (2013) Quim Nova 36:790CrossRefGoogle Scholar
  20. 20.
    Bala N, Dey A, Das S, Basu R, Nandy P Iran J Plant Physiol 4(3)Google Scholar
  21. 21.
    Cabello M, Irrazabal G, Bucsinszky AM, Saparrat M, Schalamuk S (2005) J Basic Microbiol 45(3):182CrossRefGoogle Scholar
  22. 22.
    Yadav H, Fatima R, Sharma A, Mathur S (2017) Appl Soil Ecol 113:80CrossRefGoogle Scholar
  23. 23.
    Narsian V, Patel HH (2000) Soil Biol Biochem 32:559CrossRefGoogle Scholar
  24. 24.
    Goenadi DH, Siswanto Y, Sugiarto Y (2000) Soil Sci Soc Am J 64:927Google Scholar
  25. 25.
    Chien SH, Sale PWG, Friesen DK (1990) Fertil Res 24:149CrossRefGoogle Scholar
  26. 26.
    Chien SH, Prochnow LI, Cantarella H (2009) Adv Agron 102:267CrossRefGoogle Scholar
  27. 27.
    Tyliszczak B, Polaczek J, Pielichowski K (2009) Pol J Environ Stud 18:475Google Scholar
  28. 28.
    Jin SP, Yue GR, Feng L, Han YQ, Yu XH, Zhang ZH (2011) J Agric Food Chem 59:322CrossRefGoogle Scholar
  29. 29.
    Xiao XM, Yu L, Xie FW, Bao XY, Liu HS, Ji ZL, Chen L (2017) Chem Eng J 309:607CrossRefGoogle Scholar
  30. 30.
    Jin SP, Wang YS, He JF, Yang Y, Yu XH, Yue GR (2013) J Appl Polym Sci 128:407CrossRefGoogle Scholar
  31. 31.
    Qiao DL, Liu HS, Yu L, Bao XY, Simon GP, Petinakis E, Chen L (2016) Carbohydr Polyms 147:146CrossRefGoogle Scholar
  32. 32.
    Sharma J, Kaith B, Bhatti M (2018) J Polym Environ 26:518CrossRefGoogle Scholar
  33. 33.
    León O, Muñoz-Bonilla A, Soto D, Ramirez J, Marquez Y, Colina M, Fernández-García M (2018) J Polym Environ 26:728CrossRefGoogle Scholar
  34. 34.
    Chen S, Yang M, Ba C, Yu S, Jiang Y, Zou H, Zhang Y (2018) Sci Total Environ 615:431CrossRefGoogle Scholar
  35. 35.
    Moreira FKV, Marconcini JM, Mattoso LHC (2012) Polym Bull 69:561CrossRefGoogle Scholar
  36. 36.
    Murphy J, Riley JP (1962) Anal Chim Acta 27:31CrossRefGoogle Scholar
  37. 37.
    Mobasherpour I, Heshajin MS, Kazemzadeh A, Zakeri M (2007) J Alloy Compd 430:330CrossRefGoogle Scholar
  38. 38.
    André RS, Paris EC, Gurgel  MFC, Rosa ILV, Paiva-Santos CO, Li MS, Varela JA, Longo E (2012) J Alloys Compd 531:50CrossRefGoogle Scholar
  39. 39.
    Kumar AC, GS (2010) Carbohydr Polym 82:454CrossRefGoogle Scholar
  40. 40.
    Corradini EL, Medeiros ES, Carvalho AJF, Curvelo AAS, Mattoso LHC (2005) Polímeros 15:268CrossRefGoogle Scholar
  41. 41.
    McLaughlin MM, McBeath TM, Smernik R, Stacey SP, Ajiboye B, Guppy C (2011) Plant Soil 349:69CrossRefGoogle Scholar
  42. 42.
    Fulmer MT, Ison IC, Hankermayer CR, Constantz BR, Ross J (2002) Biomaterials 23:751CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryFederal University of São CarlosSão CarlosBrazil
  2. 2.Programa de Pós-Graduação em Biotecnologia (PPG-Biotec), Centro de Ciências Exatas e Tecnologia (CCET)Federal University of São CarlosSão CarlosBrazil
  3. 3.Department of Materials EngineeringFederal University of São CarlosSão CarlosBrazil
  4. 4.Department of EngineeringFederal University of LavrasLavrasBrazil
  5. 5.Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentaçãoSão CarlosBrazil

Personalised recommendations