Advertisement

Biodegradable PBAT-Based Nanocomposites Reinforced with Functionalized Cellulose Nanocrystals from Pseudobombax munguba: Rheological, Thermal, Mechanical and Biodegradability Properties

  • I. F. Pinheiro
  • F. V. FerreiraEmail author
  • G. F. Alves
  • A. RodolfoJr.
  • A. R. Morales
  • L. H. I. Mei
Original Paper
  • 28 Downloads

Abstract

Cellulose nanocrystals (CNC) were isolated from Munguba (Pseudobombax munguba) fibers and then functionalized with octadecyl isocyanate. Nanocomposites based on poly(butylene adipate-co-terephthalate) (PBAT) were prepared with different concentrations of cellulose nanocrystals (3, 5 and 7 wt%). We show that the addition of functionalized CNC leads to PBAT-based nanocomposites with enhanced thermal, rheological and mechanical performances, maintaining the biodegradability of the matrix. The better properties of the nanocomposites were related to the optimal amount and the uniform dispersion of CNC in PBAT. The study here presented expands the application of Munguba fibers, exploring their use to prepare PBAT-based biodegradable nanocomposites with improved properties. These nanocomposites have potential for replacement the conventional polymers in future applications with the advantage of exhibiting biodegradability.

Keywords

Cellulose nanocrystals Pseudobombax munguba Poly(butylene adipate-co-terephthalate) Biodegradable polymer nanocomposites Mechanical properties Biodegradation 

Notes

Acknowledgements

The authors acknowledge the São Paulo Research Foundation – FAPESP (Grant 2016/09588-9 – Ph.D. fellowship of F.V.F), CAPES, FAPEAM and CNPq for financial support. The authors also thank Espaço da Escrita – Pró-Reitoria de Pesquisa – UNICAMP for the language services provided.

References

  1. 1.
    Attaran SA, Hassan A, Wahit MU (2017) Materials for food packaging applications based on bio-based polymer nanocomposites. J Thermoplast Compos Mater 30:143–173.  https://doi.org/10.1177/0892705715588801 Google Scholar
  2. 2.
    Ferreira F, Mariano M, Pinheiro I et al (2019) Cellulose nanocrystal-based poly(butylene adipate-co-terephthalate) nanocomposites covered with antimicrobial silver thin films. Polym Eng Sci.  https://doi.org/10.1002/pen.25066 Google Scholar
  3. 3.
    Scaffaro R, Loprest F, Maio A et al (2017) Development of polymeric functionally graded scaffolds: a brief review. J Appl Biomater Funct Mate 15:e107–e121.  https://doi.org/10.5301/jabfm.500033 Google Scholar
  4. 4.
    Ferreira FV, Mariano M, Lepesqueur LSS et al (2019) Silver nanoparticles coated with dodecanethiol used as fillers in non-cytotoxic and antifungal PBAT surface based on nanocomposites. Mater Sci Eng C 98:800–807.  https://doi.org/10.1016/j.msec.2019.01.044 Google Scholar
  5. 5.
    Francisco W, Ferreira FV, Ferreira EV et al (2015) Functionalization of multi-walled carbon nanotube and mechanical property of epoxy-based nanocomposite. J Aerosp Technol Manag 7:289–293.  https://doi.org/10.5028/jatm.v7i3.485 Google Scholar
  6. 6.
    Scaffaro R, Maio A, Lo Re G et al (2018) Advanced piezoresistive sensor achieved by amphiphilic nanointerfaces of graphene oxide and biodegradable polymer blends. Compos Sci Technol 156:166–176.  https://doi.org/10.1016/j.compscitech.2018.01.008 Google Scholar
  7. 7.
    Scaffaro R, Maio A, Botta L et al (2019) Tunable release of Chlorhexidine from Polycaprolactone-based filaments containing graphene nanoplatelets. Eur Polym J 110:221–232.  https://doi.org/10.1016/j.eurpolymj.2018.11.031 Google Scholar
  8. 8.
    Botan R, Pinheiro IF, Ferreira FV, Lona LMF (2018) Correlation between water absorption and mechanical properties of polyamide 6 filled with layered double hydroxides (LDH). Mater Res Express 5:65004.  https://doi.org/10.1088/2053-1591/aac680 Google Scholar
  9. 9.
    Lebreton LCM, van der Zwet J, Damsteeg J-W et al (2017) River plastic emissions to the world’s oceans. Nat Commun 8:15611.  https://doi.org/10.1038/ncomms15611 Google Scholar
  10. 10.
    Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782.  https://doi.org/10.1126/sciadv.1700782 Google Scholar
  11. 11.
    Rosa RP, Ferreira FV, Saravia APK et al (2018) A combined computational and experimental study on the polymerization of ε-caprolactone. Ind Eng Chem Res 57:13387–13395.  https://doi.org/10.1021/acs.iecr.8b03288 Google Scholar
  12. 12.
    Scaffaro R, Maio A, Lopresti F (2019) Effect of graphene and fabrication technique on the release kinetics of carvacrol from polylactic acid. Compos Sci Technol 169:60–69.  https://doi.org/10.1016/j.compscitech.2018.11.003 Google Scholar
  13. 13.
    Scaffaro R, Maio A, Gulino EF, Megna B (2019) Structure-property relationship of PLA-Opuntia Ficus Indica biocomposites. Compos Part B Eng 167:199–206.  https://doi.org/10.1016/j.compositesb.2018.12.025 Google Scholar
  14. 14.
    Scaffaro R, Maio A, Lopresti F (2018) Physical properties of green composites based on poly-lactic acid or Mater-Bi® filled with Posidonia Oceanica leaves. Compos part A-Appl S 112:315–327.  https://doi.org/10.1016/j.compositesa.2018.06.024 Google Scholar
  15. 15.
    Vroman I, Tighzert L (2009) Biodegradable polymers. Materials (Basel) 2:307–344.  https://doi.org/10.3390/ma2020307 Google Scholar
  16. 16.
    Muthuraj R, Misra M, Mohanty AK (2017) Biodegradable compatibilized polymer blends for packaging applications: a literature review. J Appl Polym Sci 45726.  https://doi.org/10.1002/app.45726
  17. 17.
    Santana-Melo GF, Rodrigues BVM, da Silva E et al (2017) Electrospun ultrathin PBAT/nHAp fibers influenced the in vitro and in vivo osteogenesis and improved the mechanical properties of neoformed bone. Colloid Surface B 155:544–552.  https://doi.org/10.1016/j.colsurfb.2017.04.053 Google Scholar
  18. 18.
    Pereira da Silva JS, Farias da Silva JM, Soares BG, Livi S (2017) Fully biodegradable composites based on poly(butylene adipate- co -terephthalate)/peach palm trees fiber. Compos Part B Eng 129:117–123.  https://doi.org/10.1016/j.compositesb.2017.07.088 Google Scholar
  19. 19.
    Ferreira FV, Pinheiro IF, Mariano M et al (2019) Environmentally friendly polymer composites based on PBAT reinforced with natural fibers from the amazon forest. Polym Compos.  https://doi.org/10.1002/pc.25196 Google Scholar
  20. 20.
    Morelli CL, Belgacem N, Bretas RES, Bras J (2016) Melt extruded nanocomposites of polybutylene adipate-co-terephthalate (PBAT) with phenylbutyl isocyanate modified cellulose nanocrystals. J Appl Polym Sci 133:1–9.  https://doi.org/10.1002/app.43678 Google Scholar
  21. 21.
    Siqueira G, Bras J, Follain N et al (2013) Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydr Polym 91:711–717.  https://doi.org/10.1016/j.carbpol.2012.08.057 Google Scholar
  22. 22.
    Bras J, Hassan ML, Bruzesse C et al (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crops Prod 32:627–633.  https://doi.org/10.1016/j.indcrop.2010.07.018 Google Scholar
  23. 23.
    Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411.  https://doi.org/10.1021/la9028595 Google Scholar
  24. 24.
    Gribel R, Abbott R (1996) Genetics of cytosolic phosphoglucose isomerase (PGI) variation in the Amazonian tree Pseudobombax munguba (Bombacaceae). Heredity 76:531–538Google Scholar
  25. 25.
    Pinheiro IF, Morales AR, Mei LH (2014) Polymeric biocomposites of poly (butylene adipate-co-terephthalate) reinforced with natural Munguba fibers. Cellulose 21:4381–4391.  https://doi.org/10.1007/s10570-014-0387-z Google Scholar
  26. 26.
    Mariano M, El Kissi N, Dufresne A (2016) Structural reorganization of CNC in injection-molded CNC/PBAT materials under thermal annealing. Langmuir 32:10093–10103.  https://doi.org/10.1021/acs.langmuir.6b03220 Google Scholar
  27. 27.
    Ferreira FV, Dufresne A, Pinheiro IF et al (2018) How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: a comprehensive review. Eur Polym J 108:274–285.  https://doi.org/10.1016/j.eurpolymj.2018.08.045 Google Scholar
  28. 28.
    Scaffaro R, Botta L, Lopresti F et al (2017) Green nanocomposites-based on PLA and natural organic fillers. In: Handbook of composites from renewable materials, structure and chemistry. Wiley, Hoboken, pp 637–669Google Scholar
  29. 29.
    Scaffaro R, Botta L, Lopresti F et al (2017) Polysaccharide nanocrystals as fillers for PLA based nanocomposites. Cellulose 24:447–478.  https://doi.org/10.1007/s10570-016-1143-3 Google Scholar
  30. 30.
    Mariano M, Pilate F, de Oliveira FB et al (2017) Preparation of cellulose nanocrystal-reinforced poly(lactic acid) nanocomposites through noncovalent modification with PLLA-based surfactants. ACS Omega 2:2678–2688.  https://doi.org/10.1021/acsomega.7b00387 Google Scholar
  31. 31.
    Ferreira FV, Pinheiro IF, Gouveia RF et al (2018) Functionalized cellulose nanocrystals as reinforcement in biodegradable polymer nanocomposites. Polym Compos 39:E9–E29.  https://doi.org/10.1002/pc.24583 Google Scholar
  32. 32.
    Morelli CL, Belgacem MN, Branciforti MC et al (2016) Nanocomposites of PBAT and cellulose nanocrystals modified by in situ polymerization and melt extrusion. Polym Eng Sci 56:1339–1348.  https://doi.org/10.1002/pen.24367 Google Scholar
  33. 33.
    Kashani Rahimi S, Aeinehvand R, Kim K, Otaigbe JU (2017) Structure and biocompatibility of bioabsorbable nanocomposites of aliphatic-aromatic copolyester and cellulose nanocrystals. Biomacromol 18:2179–2194.  https://doi.org/10.1021/acs.biomac.7b00578 Google Scholar
  34. 34.
    Morelli CL, Belgacem MN, Branciforti MC et al (2016) Supramolecular aromatic interactions to enhance biodegradable film properties through incorporation of functionalized cellulose nanocrystals. Compos part A-Appl S 83:80–88.  https://doi.org/10.1016/j.compositesa.2015.10.038 Google Scholar
  35. 35.
    Zhang X, Ma P, Zhang Y (2016) Structure and properties of surface-acetylated cellulose nanocrystal/poly(butylene adipate-co-terephthalate) composites. Polym Bull 73:2073–2085.  https://doi.org/10.1007/s00289-015-1594-y Google Scholar
  36. 36.
    La Mantia FP, Morreale M, Botta L et al (2017) Degradation of polymer blends: a brief review. Polym Degrad Stab.  https://doi.org/10.1016/j.polymdegradstab.2017.07.011 Google Scholar
  37. 37.
    Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898–1914.  https://doi.org/10.1016/j.polymdegradstab.2012.06.028 Google Scholar
  38. 38.
    Ferreira FV, Mariano M, Rabelo SC et al (2018) Isolation and surface modification of cellulose nanocrystals from sugarcane bagasse waste: from a micro- to a nano-scale view. Appl Surf Sci 436:1113–1122.  https://doi.org/10.1016/j.apsusc.2017.12.137 Google Scholar
  39. 39.
    Pinheiro IF, Ferreira FV, Souza DHS et al (2017) Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals. Eur Polym J 97:356–365.  https://doi.org/10.1016/j.eurpolymj.2017.10.026 Google Scholar
  40. 40.
    Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers (Basel) 2:728–765.  https://doi.org/10.3390/polym2040728 Google Scholar
  41. 41.
    ASTM Standard D5988-12 (2012) No Title. Am. Soc. Test. MaterGoogle Scholar
  42. 42.
    Campbell C (2008) Soil microbiology, ecology, and biochemistry. Eur J Soil Sci 59:1008–1009.  https://doi.org/10.1111/j.1365-2389.2008.01052_2.x
  43. 43.
    Junior de Menezes A, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563.  https://doi.org/10.1016/j.polymer.2009.07.038 Google Scholar
  44. 44.
    Roohani M, Habibi Y, Belgacem NM et al (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498.  https://doi.org/10.1016/j.eurpolymj.2008.05.024 Google Scholar
  45. 45.
    Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294.  https://doi.org/10.1039/c2nr30260h Google Scholar
  46. 46.
    Ferreira FV, Cividanes LS, Brito FS et al (2016) Functionalization of carbon nanotube and applications. In: Functionalizing graphene and carbon nanotubes. SpringerBriefs in applied sciences and technology. Springer, pp 31-61.  https://doi.org/10.1007/978-3-319-35110-0_2
  47. 47.
    Ferreira FV, Francisco W, De Menezes BRC et al (2015) Carbon nanotube functionalized with dodecylamine for the effective dispersion in solvents. Appl Surf Sci doi.  https://doi.org/10.1016/j.apsusc.2015.09.202 Google Scholar
  48. 48.
    Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941.  https://doi.org/10.1039/c0cs00108b Google Scholar
  49. 49.
    Ferreira FV, Cividanes LDS, Brito FS et al (2016) Functionalizing graphene and carbon nanotubes: a review. Springer, New York, NY.  https://doi.org/10.1007/978-3-319-35110-0 Google Scholar
  50. 50.
    Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299.  https://doi.org/10.1016/j.carbpol.2011.06.030 Google Scholar
  51. 51.
    Yin Y, Tian X, Jiang X et al (2016) Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate. Carbohydr Polym 142:206–212.  https://doi.org/10.1016/j.carbpol.2016.01.014 Google Scholar
  52. 52.
    Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493.  https://doi.org/10.1016/j.polymer.2007.03.062 Google Scholar
  53. 53.
    Tan C, Peng J, Lin W et al (2015) Role of surface modification and mechanical orientation on property enhancement of cellulose nanocrystals/polymer nanocomposites. Eur Polym J 62:186–197.  https://doi.org/10.1016/j.eurpolymj.2014.11.033 Google Scholar
  54. 54.
    Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Part B Polym Phys 52:791–806.  https://doi.org/10.1002/polb.23490 Google Scholar
  55. 55.
    Einstein A (1906) On the theory of Brownian movement. Ann Phys 19:371–381Google Scholar
  56. 56.
    Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97.  https://doi.org/10.1017/S0022112077001062 Google Scholar
  57. 57.
    de Menezes BRC, Ferreira FV, Silva BC et al (2018) Effects of octadecylamine functionalization of carbon nanotubes on dispersion, polarity, and mechanical properties of CNT/HDPE nanocomposites. J Mater Sci 53:14311–14327.  https://doi.org/10.1007/s10853-018-2627-3 Google Scholar
  58. 58.
    Ferreira FV, Franceschi W, Menezes BRC et al (2017) Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites. Appl Surf Sci 410:267–277.  https://doi.org/10.1016/j.apsusc.2017.03.098 Google Scholar
  59. 59.
    Ferreira FV, Brito FS, Franceschi W et al (2018) Functionalized graphene oxide as reinforcement in epoxy based nanocomposites. Surf Interfaces 10:100–109.  https://doi.org/10.1016/j.surfin.2017.12.004 Google Scholar
  60. 60.
    Ferreira FV, Menezes BRC, Franceschi W et al (2017) Influence of carbon nanotube concentration and sonication temperature on mechanical properties of HDPE/CNT nanocomposites. Fullerenes Nanotub Carbon Nanostructures 25:531–539.  https://doi.org/10.1080/1536383X.2017.1359553 Google Scholar
  61. 61.
    Ferreira FV, Francisco W, Menezes BRC et al (2016) Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites. Appl Surf Sci 389:921–929.  https://doi.org/10.1016/j.apsusc.2016.07.164 Google Scholar
  62. 62.
    Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265.  https://doi.org/10.1016/j.biotechadv.2007.12.005 Google Scholar
  63. 63.
    Ferreira FV, Cividanes LS, Gouveia RF, Lona LMF (2018) An overview on properties and applications of poly(butylene adipate- co -terephthalate)-PBAT based composites. Polym Eng Sci.  https://doi.org/10.1002/pen.24770 Google Scholar
  64. 64.
    Witt U, Einig T, Yamamoto M et al (2001) Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44:289–299.  https://doi.org/10.1016/S0045-6535(00)00162-4 Google Scholar
  65. 65.
    Díaz A, Katsarava R, Puiggalí J (2014) Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s. Int J Mol Sci 15:7064–7123.  https://doi.org/10.3390/ijms15057064 Google Scholar
  66. 66.
    Someya Y, Kondo N, Shibata M (2007) Biodegradation of poly(butylene adipate-co-butylene terephthalate)/layered-silicate nanocomposites. J Appl Polym Sci 106:730–736.  https://doi.org/10.1002/app.24174 Google Scholar
  67. 67.
    Mohanty S, Nayak SK (2012) Biodegradable nanocomposites of poly(butylene adipate-co-terephthalate) (PBAT) and organically modified layered silicates. J Polym Environ 20:195–207.  https://doi.org/10.1007/s10924-011-0408-z Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringState University of Campinas (UNICAMP)CampinasBrazil
  2. 2.Braskem S/ASão PauloBrazil

Personalised recommendations