Advertisement

Effect of Rice Husk Derived Nanosilica on the Structure, Properties and Biodegradability of Corn-Starch/LDPE Composites

  • Deepshikha Datta
  • Gopinath HalderEmail author
Original Paper
  • 19 Downloads

Abstract

Development of material with enhanced mechanical properties and biodegradability by the incorporation of synthesized inorganic nanostructured mesoporous silica from rice husk has been investigated. The produced nanosilica (≈ 25 nm and 213.045 m2/g surface area) and nanosilica blended LDPE/starch composites were extensively characterised by SEM, FTIR, XRD, XRF, TEM, EDAX and TGA analysis. The low cost of production estimated, ensures its feasibility toward large scale application. The addition of nanosilica into the matrix led to the enhancement of Young’s modulus and stiffness by a value of 535.6 MPa and 32172.81 N/m respectively at 3% nanosilica content, thereby enhancing the initial rigidity and resistivity towards deformation making a better biodegradable substitute in terms of initial application range. The MFI and hardness value also increased with increase of silica content upto 1.5% and 2% respectively to 7.23 g/10 min and 42 (Shor D). Increase in nanofiller content improved the value of degradation rate constant (k) of the weight loss data plot in both vegetable waste and garden soil environment. The addition of 1.5% of nanosilica to a blend of 80% LDPE and 20% starch showed almost the same biodegradation rate as that without nanosilica but with superior mechanical properties and applicability range.

Keywords

Nanosilica Starch Biodegradability Young’s modulus Stiffness 

Notes

Acknowledgements

Authors express their thankfulness to the technical persons of Central Institute of Plastic Engineering & Technology, Bhubaneswar, Odisha for their immense support towards indigenous preparation of biodegradable film. The financial support from the Ministry of Science and Technology, Government of West Bengal through the research project ST/P/S&T/IG-9/2016 is gratefully acknowledged.

References

  1. 1.
    Huang CY, Roan ML, Kuo MC, Lu WL (2005) Polym Degrad Stab 90:95Google Scholar
  2. 2.
    Thakore IM, Desai S, Sarawade BD, Devi S (2001) Eur Polym J 37:151Google Scholar
  3. 3.
    Arvanitoyannisa I, Biliaderis CG, Ogawab H, Kawasakib N (1998) Carbohydr Polym 36:89Google Scholar
  4. 4.
    Pedroso AG, Rosa DS (2005) Carbohydr Polym 59:1Google Scholar
  5. 5.
    Aburto J, Thiebaud S, Alric I, Borredon E, Bikiaris D, Prinos J, Panayiotou C (1997) PoIym 34:101Google Scholar
  6. 6.
    Rim M, Pometto AL (1994) J Food Prot 57:1007Google Scholar
  7. 7.
    Willett JL (1992) Biodegradable plastics. US Patent 5087650Google Scholar
  8. 8.
    Griffin GJL (1992) Emerging technologies for materials and chemicals from biomass.In Rowell RM, Schultz TP, Narayan R (Eds.), American Chemical Society. (pp. 476–482). Washington D. C.: ACS Symposium SeriesGoogle Scholar
  9. 9.
    Datta D, Halder G (2018) Process Saf Environ Prot 114:143Google Scholar
  10. 10.
    Lu YS, Tighzerta I, Dole P, Erre D (2005) Polym 46:9863Google Scholar
  11. 11.
    Funke U, Bergthaller W, Lindhauer MG (1998) Polym Degrad Stab 59:293Google Scholar
  12. 12.
    Hulleman SHD, Janssen FHP, Fiel H (1998) Polym, 39:2043Google Scholar
  13. 13.
    Surini S, Putri KSS, Anwar E (2014) Int J Pharm Pharm Sci 6:17Google Scholar
  14. 14.
    Pathania D, Sharma R (2012) Adv Mater 3(2):136Google Scholar
  15. 15.
    Muller JID, Martinez CG, Chiralt A (2017) Materials 10:2Google Scholar
  16. 16.
    FengCai L, Huang XB, Rong MZ, Ruan WH, Zhang MQ (2006) Polym 47:7043Google Scholar
  17. 17.
    Byung WJ, Kim CH, Tae GH, Park JB (2007) Constr Build Mater 2:1351Google Scholar
  18. 18.
    Hui C, Wang F, Zhang C, Shi Y, Jin G, Yuan S (2010) J Non-Crystr Solids 356:2781Google Scholar
  19. 19.
    Yalçin N, Sevinç V (2001) Ceram Int 27:219Google Scholar
  20. 20.
    Conradt R, Pimkhaokham P, Leela-Adisorn (1992) J Non-Cryst Solids 145:75Google Scholar
  21. 21.
    Sankar S, Sharma SK, Kaur N, Lee B, Kim DY, Lee S, Jung H (2016) Ceram Int 42:4875Google Scholar
  22. 22.
    Ghosh TB, Nandi KC, Acharya HN, Mukherjee D (1991) Mater Lett 12:175Google Scholar
  23. 23.
    Kurama S, Kurama H (2008) Ceram Int. 34:269Google Scholar
  24. 24.
    Sharma NK, Williams WS, Zangvil A (1984) J Am Ceram Soc 67:715Google Scholar
  25. 25.
    Ismail MS, Waliuddin AM (1996) Materials 10:521Google Scholar
  26. 26.
    Liou TH, Yang CC (2011) Mater Sci Eng B 176:521Google Scholar
  27. 27.
    Huang S, Jing S, Wang J, Wang Z, Jin Y (2001) Powder Technol 117:232Google Scholar
  28. 28.
    Liou TH (2004) Carbon 42:785Google Scholar
  29. 29.
    Mochidzuki K, Sakoda A, Suzuki M, Izumi J, Tomonaga N (2001) Ind Eng Chem Res 40:5705Google Scholar
  30. 30.
    Corradi AB, Bondioli F, Ferrari AM, Focher B, Leonelli C (2006) Powder Technol 167:45Google Scholar
  31. 31.
    Jal PK, Sudarshan M, Saha A, Patel S, Mishra BK (2004) Colloids Surf A Physicochem Eng Asp 240:173Google Scholar
  32. 32.
    Yuvakkumar R, Elango V, Rajendran V, Kaman N (2012) J Exp Nanosci 9(3):227Google Scholar
  33. 33.
    Moosa AA, Saddam BF (2017) Am J Mater Sci 7(6):223Google Scholar
  34. 34.
    Shen Y (2017) Renew Sustain Energy Rev 80:453Google Scholar
  35. 35.
    Real C, Alcala MD, Criado JM (1996) J Am Ceram Soc 79:2012Google Scholar
  36. 36.
    Chakraverty A, Mishra P, Banerjee H (1998) J Mater Sci 23:21Google Scholar
  37. 37.
    Thuadaij N, Nuntiya A (2008) Chang Mai Sci 38(1):206Google Scholar
  38. 38.
    Shen Y, Zhao P, Shao Q (2014) Micropor Mesopor Mat 188:46Google Scholar
  39. 39.
    Chen KT, Wang JX, Dai YM, Wang PH, Liou CY, Nien CW, Wu JS, Chen CC (2013) J Taiwan Inst Chem Eng 44:622Google Scholar
  40. 40.
    Wang L, Xue J, Gao B, Gao P, Mou C, Li J (2014) RSC Adv 4:64744Google Scholar
  41. 41.
    Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR (2008) Environ Sci Technol 42:1499Google Scholar
  42. 42.
    Zeng W, Bai H (2014) Chem Eng J 251:1Google Scholar
  43. 43.
    Shen Y, Wang J, Ge X, Chen M (2016) Renew Sustain Energy Rev 59:1246Google Scholar
  44. 44.
    Shen Y, Chen M, Sun T, Jia J (2015) Fuel 159:570Google Scholar
  45. 45.
    Trewyn BG, Giri S, Slowing II, Lin VSY (2007) Chem Commun 31:3236Google Scholar
  46. 46.
    Adam F, Appaturi JN, Iqbal A (2012) Catal Today 190(1):2Google Scholar
  47. 47.
    Gurav JL, Jung IK, Park HH, Kang ES, Nadargi DY (2010) J Nanomater 23:1Google Scholar
  48. 48.
    Nikolic M, Nguyen HD, Daugaard AE, Lof D, Mortensen K, Barsberg S, Sanadi AR (2016) Polym Degrad Stab 126:134Google Scholar
  49. 49.
    Cai LF, Huang XB, Rong MN, Ruan WH, Zhang MQ (2006) Polym 47:7043Google Scholar
  50. 50.
    Midhun Dominic CD, Begum PMS, Joseph R, Joseph D, Kumar P, Ayswarya EP (2013) Intern J Sci Environ Tech 2(5):1027Google Scholar
  51. 51.
    Lee DW, Yoo BK (2016) J Ind Eng Chem 38:1Google Scholar
  52. 52.
    Ehraman T (1994) Chemical analysis and testing task: standard method for determination of total solids in biomass (LAP-001). NREL, Gold Co.Google Scholar
  53. 53.
    Ehraman T (1994) Chemical analysis and testing task: standard method for determination of ash in biomass (LAP- 005). NREL, Gold Co.Google Scholar
  54. 54.
    ASTM (1995) Standard test methods for tensile properties of thin plastics sheeting D882-91. In: Annual Book of American Standard Testing Methods. ASTM, Wet Conshohochem, 8:182Google Scholar
  55. 55.
    Mukherjee A, Halder S, Datta D, Kumar A, Hazra B, Mandal MK, Halder G (2017) J Adv Res 8:73Google Scholar
  56. 56.
    Kokot S, Stewart S (1995) Text Res J 65:643Google Scholar
  57. 57.
    Tang S, Zou P, Xiong H, Tang H (2008) Carbohydr Polym 72:521Google Scholar
  58. 58.
    Giles HF, Wagner JR, Mount EM (2005) Extrusion: the definition processing guide and hand book, 4th edn. William Andrew Inc, NorwichGoogle Scholar
  59. 59.
    Mohan SK, Srivastava T (2010) J Biochem Tech 2(4):210Google Scholar
  60. 60.
    Swain S, Sharma RA, Bhattachary S, Chaudhary L (2013) Trans Electr Electron Mater 14(1):1Google Scholar
  61. 61.
    Zou W, Yu L, Liu X, Chen L, Zhang X, Qiao D (2012) Carbohydr Polym 87(2):1583Google Scholar
  62. 62.
    Rashid I, Al Omari MH, Leharne SA, Chowdhury BZ, Badwan A (2012) Starch Starke 64(9):713Google Scholar
  63. 63.
    Zhou G, Luo Z, Fu X (2014) Indus Crops Prod 52:105Google Scholar
  64. 64.
    Muscat D, Adhikari B, Chaudhary DS (2012) J Food Eng 109(2):189Google Scholar
  65. 65.
    Joshi M, Aldred P, McKnight S, Panozzo JF, Kasapis S, Adhikari RI (2013) Carbohydr Polym 92(2):1484Google Scholar
  66. 66.
    Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Tubira AF, Muniz EC (2012) Cellulose 19(4):1225Google Scholar
  67. 67.
    Dilfi KFA (2011) Linear low density polyethylene—biodegradability using bacteria from marine benthic, environment and photo degradability using ultraviolet light. Ph.D. Thesis, Cochin University of Science and Technology, KeralaGoogle Scholar
  68. 68.
    Wang Y, Ju B, Zhang S (2012) Carbohydr Polym 90(1):696Google Scholar
  69. 69.
    Luo Z, Xu Z (2011) Food Sci Technol 44(10):1993Google Scholar
  70. 70.
    Lipsa R, Tudorachi N, Vasile C, Chiriac A, Grigoras A (2013) J Polym Environ 21(2):461Google Scholar
  71. 71.
    Ungar T (2004) Scripta Mater 51:777Google Scholar
  72. 72.
    Jeffery D, Vyazovkin PS, Wight CA (2001) Macromol Chem Phys 202:775Google Scholar
  73. 73.
    Hinsken H, Moss S, Pauquet JR, Zweifel H (1991) Polym Degrad Stab 34:279Google Scholar
  74. 74.
    Ali SS, Ishtiaq AQ, Arshad M, Khan Z, Voice TC, Mehmood CT (2016) Environ Nanotech Monitor Manag 5:44Google Scholar
  75. 75.
    Rathod MC, Godhani VJ, Dhale DA (2015) J Pharm Sci 4(10):1323Google Scholar
  76. 76.
    Sen SK, Raut S (2015) J Environ Chem Eng 5(3):1Google Scholar
  77. 77.
    Kawai F, Schink B (1987) Crit Rev Biotechnol 6(3):273Google Scholar
  78. 78.
    Mondal S, Aikat K, Haldar G (2016) Ecol Eng 92:158Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Institute of TechnologyDurgapurIndia
  2. 2.Department of Polymer ScienceCentral Institute of Plastic Engineering and TechnologyBhubaneswarIndia

Personalised recommendations