Advertisement

Degradation Rate of Bio-based Agricultural Mulch is Influenced by Mulch Composition and Biostimulant Application

  • Ashley A. Thompson
  • Mitchell Benjamin Samuelson
  • Ignatius Kadoma
  • Erick Soto-Cantu
  • Rhae Drijber
  • Sam E. Wortman
Original Paper
  • 4 Downloads

Abstract

Spunbond polylactic acid (PLA) based agricultural mulches provide several benefits including environmental sustainability, durability, weed control, and soil moisture conservation. Large-scale adoption of PLA mulches in organic and conventional agricultural systems has been limited due to slow to biodegradation and persistence in soil. A 16-week microcosm study was conducted to assess the effects of four commercially available biostimulants (Biocat 1000, Extract PBA, Custom GP, and Environoc 501), a compost extract, and distilled water, urea, and sucrose controls on biodegradation and microbial respiration of bio-based mulch in soil. Mulch treatments included a spunbond PLA mulch, two novel composite PLA mulches with alfalfa (PLA-A) and soy (PLA-S) particles embedded in the fabric, paper mulch, and bio-based plastic film. After 16 weeks, the PLA-A and PLA-S mulches lost 43% and 48% more mass than the PLA mulch. Cumulative microbial respiration in the PLA-A and PLA-S mulch microcosms was 245% and 239% greater than respiration in PLA mulch microcosms. The effects of biostimulants on biodegradation and microbial respiration were inconsistent. Our results suggest that composite spunbond PLA mulches containing plant-based materials degrade more quickly than pure PLA mulches in soil, and certain biostimulant products may accelerate biodegradation.

Keywords

Polylactic acid Microbial respiration Biodegradation Soil Agriculture 

Notes

Acknowledgements

The authors thank Tom Galusha and Raihanah Hassim for their technical assistance. Project funding was provided in part through the U.S. Department of Agriculture, National Institute of Food and Agriculture (USDA NIFA), Organic Transitions Program (ORG), Award # 2016-51106-25711.

References

  1. 1.
    Cirujeda A, Aibar J, Anzalone Á, Martin-Closas L, Meco R, Moreno MM, Pardo A, Pelacho AM, Rojo F, Royo-Esnal A, Suso ML, Zaragoza C (2012) Biodegradable mulch instead of polyethylene for weed control of processing tomato production. Agron Sustain Dev 32(4):889–897CrossRefGoogle Scholar
  2. 2.
    Lamont WJ (2005) Plastics: modifying the microclimate for the production of vegetable crops. HortTechnology 15(3):477–481CrossRefGoogle Scholar
  3. 3.
    Tarara JM (2000) Microclimate modifications with plastic mulch. HortScience 35(2):169–180Google Scholar
  4. 4.
    Brodhagen M, Peyron M, Miles C, Ingles DA (2015) Biodegradable plastic agricultural mulches and key features of microbial degradation. Appl Microbiol Biotechnol 99(3):1039–1056CrossRefGoogle Scholar
  5. 5.
    Steinmetz Z, Wollmann C, Schaefer M, Buchmann C, David J, Tröger J, Muñoz K, Frör O, Schaumann GE (2016) Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci Total Environ 550:690–705CrossRefGoogle Scholar
  6. 6.
    Moreno MM, Moreno A (2008) Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop. Sci Hortic 116(3):256–263CrossRefGoogle Scholar
  7. 7.
    Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev 32(2):501–529CrossRefGoogle Scholar
  8. 8.
    Wortman SE, Kadoma I, Crandall MD (2015) Assessing the potential for spunbond, nonwoven, biodegradable fabric as mulches for tomato and pepper crops. Sci Hortic 116:256–263Google Scholar
  9. 9.
    Miles C, Wallace R, Wszelaki A, Martin J, Cowan J, Walters T, Inglis D (2012) Deterioration of potentially biodegradable alternatives to black plastic mulch in three tomato production regions. HortScience 47(9):1270–1277Google Scholar
  10. 10.
    Wortman SE, Kadoma I, Crandall MD (2016) Biodegradable plastic and fabric mulch performance in field and high tunnel cucumber production. HortTechnology 26(2):148–155Google Scholar
  11. 11.
    Goldberger JR, Jones RE, Miles CA, Wallace RW, Inglis DA (2013) Barriers and bridges to the adoption of biodegradable plastic mulches for US specialty crop production. Renew Agric Food Syst 30(2):143–153CrossRefGoogle Scholar
  12. 12.
    ASTM D5988-18 standard test method for determining aerobic biodegradation of plastic materials in soilGoogle Scholar
  13. 13.
    ISO 17556: 2012 plastics—determination of the ultimate aerobic biodegradability of plastic materials in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolvedGoogle Scholar
  14. 14.
    Dharmalingam S, Hayes DG, Wadsworth LC, Dunlap RN, DeBruyn JM, Lee J, Wszelaki AL (2015) Soil degradation of polylactic acid/polyhydroxyalkanoate-based nonwoven mulches. J Polym Environ 23(3):302–315CrossRefGoogle Scholar
  15. 15.
    Akutsu-Shigeno Y, Terraphatpornchai T, Teamtisong K, Nomura N, Uchiyama H, Nakahara T, Nakajima-Kambe T (2003) Cloning and sequencing of a poly(dl-lactic acid) depolymerase gene from Paenibacillus amylolyticus strain TB-13 and its functional expression in Escherichia coli. Appl Envirom Microbiol 69(5):2498–2504CrossRefGoogle Scholar
  16. 16.
    Li S, Molina I, Bueno Martinez M, Vert M (2002) Hydrolytic and enzymatic degradation of physically crosslinked hydrogels prepared from PLA/PEO/PLA triblock copolymers. J Mater Sci 13(1):81–86Google Scholar
  17. 17.
    Mayumi D, Akutsu-Shigeno Y, Uchiyama H, Nomura N, Nakajima-Kambe T (2008) Identification and characterization of novel poly(dl-lactic acid) deopolymerases from metagenome. Appl Microbiol Biotechnol 79(5):743–750CrossRefGoogle Scholar
  18. 18.
    Stoleru E, Hitruc EG, Vasile C, Oprică L (2017) Biodegradation of poly(lactic acid)/chitosan stratified composites in the presence of the Phanerochaete chrysosporium fungus. Polym Degrad Stab 143:118–129CrossRefGoogle Scholar
  19. 19.
    Teeraphatpornchai T, Nakajima-Kambe T, Shigeno-Akutsu Y, Nakayama M, Nomura N, Nakahara T, Uchiyama H (2003) Isolation and characterization of a bacterium that degrades various polyester-based biodegradable plastics. Biotechnol Lett 25(1):23–28CrossRefGoogle Scholar
  20. 20.
    Williams DF (1982) Biodegradation of surgical polymers. J Mater Sci 17(5):1233–1246CrossRefGoogle Scholar
  21. 21.
    Kim MY, Kim C, Moon J, Heo J, Jung SP, Kim JR (2017) Polymer film-based screening and isolation of polylactic acid (PLA)-degrading microorganisms. J Microbiol Biotechnol 27(2):342–349CrossRefGoogle Scholar
  22. 22.
    Lipsa R, Tudorachi N, Darie-Nita RN, Oprică L, Vasile C, Chiriac A (2016) Biodegradation of poly(lactic acid) and some of its base systems with Trichoderma viride. Int J Biol Macromol 88:515–526CrossRefGoogle Scholar
  23. 23.
    Saki K, Kawano H, Iwami A, Nakamura M, Moriguchi M (2001) Isolation of a thermophiclic poly-l-lactide degrading bacterium from compost and its enzymatic characterization. J Biosci Bioeng 92(3):298–300CrossRefGoogle Scholar
  24. 24.
    Iovino R, Zullo R, Rao MA, Cassr L, Gianfreda L (2008) Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polym Degrad Stab 93(1):147–157CrossRefGoogle Scholar
  25. 25.
    Yadav RL, Shukla SK, Suman A, Singh PN (2009) Trichoderma inoculation and trash management effects on soil microbial biomass, soil respiration, nutrient uptake and yield of ratoon sugarcane under subtropical conditions. Biol Fertil Soils 45(5):461–468CrossRefGoogle Scholar
  26. 26.
    Chen SK, Subler S, Edwards CA (2002) Effects of agricultural biostimulants on soil microbial activity and nitrogen dynamics. Appl Soil Ecol 19(3):249–259CrossRefGoogle Scholar
  27. 27.
    Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383(1–2):3–41CrossRefGoogle Scholar
  28. 28.
    Lee SH, Yeo SY (2016) Improvement of hydrophilicity of polylactic acid (PLA) fabrics by means of a proteolytic enzyme from Bacillus licheniformis. Fibers Polym 17(8):1154–1161CrossRefGoogle Scholar
  29. 29.
    Nyambo C, Mohanty AK, Misra M (2011) Effect of maleated compatibilizer on performance of PLA/wheat straw-based green composites. Macromol Mater Eng 296:710–718CrossRefGoogle Scholar
  30. 30.
    Pradhan R, Misra M, Erickson L, Mohanty A (2010) Compostability and biodegradation study of PLA-wheat straw and PLA-soy based green composites in a simulated composting bioreactor. Bioresour Technol 101(21):8489–8491CrossRefGoogle Scholar
  31. 31.
    Yamoum C, Magaraphan R (2017) Effect of peanut shell content on mechanical, thermal, and biodegradable properties of peanut shell/polylactic acid biocomposites. Polym Compos 38(4):682–690CrossRefGoogle Scholar
  32. 32.
    Bettas Ardisson G, Maurizio G, Barbale M, Degli-Innocenti F (2014) Biodegradation of plastics in soil and effects on nitrification activity. A laboratory approach. Front Microbiol 5:710CrossRefGoogle Scholar
  33. 33.
    Rees J, Zoubeck G, Jackson-Ziems T, Schleicher C, Wortmann C, Thompson L, Glewen K (2015) Sugar application to crops- Nebraska on-farm research network results. https://cropwatch.unl.edu/sugar-application-crops-%E2%80%94-nebraska-farm-research-network-results
  34. 34.
    Rodella AA, Saboya LV (1999) Calibration of conductimetric determination of carbon dioxide. Soil Biol Biochem 31:2059–2060CrossRefGoogle Scholar
  35. 35.
    Karamanlioglu M, Robson GD (2013) The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupon buried in compost and soil. Polym Degrad Stab 98(10):2063–2071CrossRefGoogle Scholar
  36. 36.
    Eiland F, Klamer M, Lind AM, Leth M, Bååth E (2001) Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw. Microb Ecol 41(3):272–280CrossRefGoogle Scholar
  37. 37.
    Moran KK, Six J, Horwath WR, van Kessel C (2005) Role of mineral-nitrogen in residue decomposition and stable soil organic matter formation. Soil Sci Soc Am J 69(6):1730–1736CrossRefGoogle Scholar
  38. 38.
    De Nobili M, Contin M, Mondini C, Brookes PC (2001) Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biol Biochem 33(9):1163–1170CrossRefGoogle Scholar
  39. 39.
    Karamanlioglu M, Houlden A, Robson GD (2014) Isolation and characterization of fungal communities associated with degradation and growth on the surface of poly(lactic) acid (PLA) in soil and compost. Int Biodeterior Biodegrad 95:301–310CrossRefGoogle Scholar
  40. 40.
    Ghorpade VM, Gennadios A, Hanna MA (2001) Laboratory composting of extruded poly(lactic acid) sheets. Bioresour Technol 76(1):57–61CrossRefGoogle Scholar
  41. 41.
    Schnurer J, Clarholm M, Rosswall T (1985) Microbial biomass and activity in an agricultural soil with different organic matter contents. Soil Biol Biochem 17(5):611–618CrossRefGoogle Scholar
  42. 42.
    Hu S, van Bruggen AHC (1997) Microbial dynamics associated with multiphasic decomposition of 14C-labled cellulose in soil. Microb Ecol 33:134–143CrossRefGoogle Scholar
  43. 43.
    Schomberg HM, Steiner JL (1997) Estimating crop residue decomposition coefficients using substrate induced respiration. Soil Biol Biochem 29(7):1089–1097CrossRefGoogle Scholar
  44. 44.
    Lizarazo LM, Jorda JD, Juarez M, Sanchez-Andreu J (2005) Effects of humic amendments on inorganic N, dehydrogenase and alkaline phosphatase activities of a Mediterranean soil. Biol Fertil Soils 42(2):172–177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ashley A. Thompson
    • 1
  • Mitchell Benjamin Samuelson
    • 2
  • Ignatius Kadoma
    • 3
  • Erick Soto-Cantu
    • 3
  • Rhae Drijber
    • 2
  • Sam E. Wortman
    • 2
  1. 1.Department of HorticultureOregon State UniversityThe DallesUSA
  2. 2.Department of Agronomy and HorticultureUniversity of Nebraska-LincolnLincolnUSA
  3. 3.3M Corporate Research and Analytical Lab3M Company, 3M CenterSt. PaulUSA

Personalised recommendations