Advertisement

Journal of Polymers and the Environment

, Volume 27, Issue 3, pp 510–520 | Cite as

Nanocomposites Based on Poly(lactic acid) and Bacterial Cellulose Acetylated by an α-Hydroxyacid Catalyzed Route

  • Jhon Alejandro Ávila Ramírez
  • Patricia Cerrutti
  • Celina Bernal
  • María Inés Errea
  • María Laura ForestiEmail author
Original Paper
  • 27 Downloads

Abstract

Poly(lactic acid) (PLA) nanocomposite films reinforced with acetylated bacterial cellulose nanoribbons were prepared by solvent casting. Acetylation of bacterial cellulose (BC) was performed by an innovative and sustainable direct solvent-free route catalyzed by citric acid. The effect of derivatization and its extent on the morphological, optical, thermal and mechanical properties of the nanocomposites was analyzed. Data collected from the above studies showed that acetylation of BC nanoribbons clearly improved the nanofibers dispersion in the PLA matrix with respect to unmodified BC, which in turn resulted in increased transparency and mechanical properties of the nanocomposites produced.

Keywords

Bacterial cellulose Acetylation Citric acid Poly(lactic acid) Nanocomposites 

Notes

Acknowledgements

Authors acknowledge Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- PIP 11220150100660) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 2016-0843—PRESTAMO BID) for financial support.

Compliance with ethical standards

Conflict of interest

The authors confirm that this article content has no conflict of interest.

References

  1. 1.
    Henton DE, Gruber P, Lunt J, Randall J (2005) Polylactic acid technology. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC Press, New York, pp. 527–577Google Scholar
  2. 2.
    Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Compos Sci Technol 66:2776CrossRefGoogle Scholar
  3. 3.
    Sanchez-García M, Lagaron J (2010) Cellulose 17:987CrossRefGoogle Scholar
  4. 4.
    Fortunati E, Luzi F, Puglia D, Dominici F, Santulli C, Kenny JM, Torre L (2014) Eur Polym J 56:77CrossRefGoogle Scholar
  5. 5.
    Hossain KMZ, Ahmed I, Parsons AJ, Scotchford CA, Walker GS, Thielemans W, Rudd CD (2012) J Mater Sci 47:2675CrossRefGoogle Scholar
  6. 6.
    Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Compos Sci Technol 70:1742CrossRefGoogle Scholar
  7. 7.
    Kowalczyk M, Piorkowska E, Kulpinski P, Pracella M (2011) Compos A 42:1509CrossRefGoogle Scholar
  8. 8.
    Wang Y, Drzal LT (2012) Appl Mater Interfaces 4:5076Google Scholar
  9. 9.
    Baheti V, Militky J, Mishra R, Behera B (2013) Text Sci Eng 3:130Google Scholar
  10. 10.
    Ghasemi S, Behrooz R, Ghasemi I (2017) J Bionanoscience 11:554CrossRefGoogle Scholar
  11. 11.
    Kim Y, Jung R, Kim HS, Jin H-Y (2009) Curr Appl Phys 9:569Google Scholar
  12. 12.
    Luddee M, Pivsa-Art S, Sirisansaneeyakul S, Pechyen C (2014) Energy Proc 56:211CrossRefGoogle Scholar
  13. 13.
    Quero F, Nogi M, Yano H, Abdulsalami K, Holmes S, Sakakini B, Eichhorn J (2010) J Appl Mater Interfaces 2:321CrossRefGoogle Scholar
  14. 14.
    Panaitescu DM, Frone AN, Chiulan I, Gabor RA, Spataru IC, Casarica A (2017) BioResources 12:662Google Scholar
  15. 15.
    Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Carbohydr Polym 83:1834CrossRefGoogle Scholar
  16. 16.
    Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM (2012) Polym Degrad Stab 97:2027CrossRefGoogle Scholar
  17. 17.
    Fortunati E, Peltzer M, Armentano I, Torre L, Kenny JM (2012) Carbohydr Polym 90:948CrossRefGoogle Scholar
  18. 18.
    Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny JM (2012) Carbohydr Polym 87:1596CrossRefGoogle Scholar
  19. 19.
    Robles E, Urrusola I, Labidi J, Serrano L (2015) Ind Crops Prod 71:44CrossRefGoogle Scholar
  20. 20.
    Spinella S, Lo Re G, Liu B, Dorgan J, Habibi Y, Leclére P, Raquez J-M, Dubois P, Gross RA (2015) Polym J 65:9CrossRefGoogle Scholar
  21. 21.
    Trifol J, Plackett D, Sillard C, Hassager O, Daugaard AE, Bras J, Szabo P (2016) J Appl Polym Sci 133:43257CrossRefGoogle Scholar
  22. 22.
    Xu Ch, Lv Q, Wu D, Wang Z (2017) Cellulose 24:2163CrossRefGoogle Scholar
  23. 23.
    Frone AN, Berlioz S, Chailan J-F, Panaitescu D (2013) Carbohydr Polym 91:377CrossRefGoogle Scholar
  24. 24.
    Jonoobi M, Mathew AP, Abdi MM, Makinejad MD, Oksman K (2012) J Polym Environ 20:991CrossRefGoogle Scholar
  25. 25.
    Habibi Y, Aouadi S, Raquez J, Dubois P (2013) Cellulose 20:2877CrossRefGoogle Scholar
  26. 26.
    Song Z, Xiao H, Zhao Y (2014) Carbohydr Polym 111:442CrossRefGoogle Scholar
  27. 27.
    Ambrosio-Martın J, Fabra MJ, Lopez-Rubio A, Lagaron JM (2015) Cellulose 22:1201CrossRefGoogle Scholar
  28. 28.
    Lee K-Y, Blaker JJ, Bismarck A (2009) Compos Sci Technol 69:2724CrossRefGoogle Scholar
  29. 29.
    Quero F, Eichhorn J, Nogi M, Lee K-Y, Bismarck A (2012) J Polym Environ 20:916CrossRefGoogle Scholar
  30. 30.
    Tomé LC, Pinto RJB, Trovatti E, Freire CSR, Silvestre AJD, Neto CP, Gandini IA (2011) Green Chem 13:419CrossRefGoogle Scholar
  31. 31.
    Zhang X, Li W, Ye B, Lin Z, Rong J (2013) ‎J Thermoplast Compos 26:346CrossRefGoogle Scholar
  32. 32.
    Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Biomacromolecules 11:454CrossRefGoogle Scholar
  33. 33.
    Almasi H, Ghanbarzadeh B, Dehghannya J, Entezami AA, Asl AK (2015) Food Packag Shelf Life 5:21CrossRefGoogle Scholar
  34. 34.
    Missoum K, Belgacem MN, Bra J (2013) Materials 6:1745CrossRefGoogle Scholar
  35. 35.
    Czaja WK, Young DJ, Kawecki M, Brown RM (2007) Biomacromolecules 8:1CrossRefGoogle Scholar
  36. 36.
    Corujo VF, Cerrutti P, Foresti ML, Vázquez A (2016) Production of bacterial nanocellulose from non-conventional fermentation media. In: Puglia D, Fortunati E, Kenny JM (eds) Multifunctional polymeric nanocomposites based on cellulosic reinforcements. Elsevier Inc, Amsterdam, pp. 39–59CrossRefGoogle Scholar
  37. 37.
    Lee K-Y, Bismarck A (2016) Bacterial nanocellulose as reinforcement for polymer matrices. In: Gama M, Dourado F, Bielecki S (eds) Bacterial nanocellulose from biotechnology to bio-economy. Elsevier, Chenai, pp 109–122CrossRefGoogle Scholar
  38. 38.
    Panaitescu DM, Frone AN, Chiulan I (2016) Ind Crops Prod 93:251CrossRefGoogle Scholar
  39. 39.
    Agustin MB, Nakatsubo F, Yano H (2016) Cellulose 23:451CrossRefGoogle Scholar
  40. 40.
    Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L (2009) Biomacromolecules 10:2144CrossRefGoogle Scholar
  41. 41.
    Blaker JJ, Walters K-YM, Drouet M, Bismarck A (2014) React Funct Polym 85:185CrossRefGoogle Scholar
  42. 42.
    Cunha AG, Zhou Q, Larsson PT, Berglund LA (2014) Cellulose 21:2773CrossRefGoogle Scholar
  43. 43.
    Suetsugu M, Kotera M, Nishino. MT, (2009) Cellulosic nanocomposite prepared by acetylation of bacterial cellulose using supercritical carbon dioxide. In: 17th International Conference on Composite Materials, 2009, Edinburgh, UKGoogle Scholar
  44. 44.
    Gonçalves S, Padrão J, Rodrigues IP, Silva JP, Sencadas V, Lanceros-Mendez S, Girão H, Dourado F, Rodrigues LR (2015) Biomacromolecules 16:1341CrossRefGoogle Scholar
  45. 45.
    Hu W, Chen S, Xu Q, Wang H (2011) Carbohydr Polym 83:1575CrossRefGoogle Scholar
  46. 46.
    Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Biomacromolecules 8:1973CrossRefGoogle Scholar
  47. 47.
    Kim D, Nishiyama Y, Kuga S (2002) Cellulose 9:361CrossRefGoogle Scholar
  48. 48.
    Lee K-Y, Quero F, Blaker JJ, Hill CAS, Eichhorn SJ, Bismarck A (2011) Cellulose 18:595CrossRefGoogle Scholar
  49. 49.
    Lee K-Y, Bismarck A (2012) Cellulose 19:891CrossRefGoogle Scholar
  50. 50.
    Tomé LC, Brandão L, Mendes AM, Silvestre AJD, Neto CP, Gandini A, Freire CSR, Marrucho IM (2010) Cellulose 17:1203CrossRefGoogle Scholar
  51. 51.
    Tomé LC, Freire MG, Rebelo LPN, Silvestre AJD, Neto CP, Marrucho IM, Freire CSR (2011) Green Chem 13:2464CrossRefGoogle Scholar
  52. 52.
    Yamamoto H, Horii F, Hirai A (2006) Cellulose 13:327CrossRefGoogle Scholar
  53. 53.
    Ávila Ramírez JA, Juan Suriano C, Cerrutti P, Foresti ML (2014) Carbohydr Polym 114:416CrossRefGoogle Scholar
  54. 54.
    Ávila Ramírez JA, Gómez Hoyos C, Arroyo S, Cerrutti P, Foresti ML, Curr ML (2016) Organocatal 3:161CrossRefGoogle Scholar
  55. 55.
    Ávila Ramírez JA, Gómez Hoyos C, Arroyo S, Cerrutti P, Foresti ML (2016) Carbohydr Polym 153:686CrossRefGoogle Scholar
  56. 56.
    Domínguez de María P (2010) ChemCatChem 2:487Google Scholar
  57. 57.
    Cerrutti P, Roldán P, Martínez García R, Galvagno MA, Vázquez A, Foresti ML (2016) J Appl Polym Sci 133:43109CrossRefGoogle Scholar
  58. 58.
    Hestrin S, Schramm M (1954) Biochem J 58:345CrossRefGoogle Scholar
  59. 59.
    Ilharco LM, Gracia RR, da Silva JL, Ferreira LFV (1997) Langmuir 13:4126CrossRefGoogle Scholar
  60. 60.
    Segal L, Creely JJ, Martin AE, Conrad CM (1959) ‎Text Res J 29:786CrossRefGoogle Scholar
  61. 61.
    Turner JF, Riga A, O`Connor A, Zhang J, Collis J (2004) J Therm Anal Calorim 75:257CrossRefGoogle Scholar
  62. 62.
    Haigler CH. Read, alteration of cellulose assembly in Acetobacter xylinum by fluorescent brightening agents, direct dyes and cellulose derivatives (University of North Carolina at Chapel Hill, 1982)Google Scholar
  63. 63.
    Hirai A, Tsuji M, Yamamoto H, Horii F (1998) Cellulose 5:201CrossRefGoogle Scholar
  64. 64.
    Gan K, Nechwatal A, Frankenfeld K, Schlufter K (2012) J Compos Mater 2:97Google Scholar
  65. 65.
    Dai X, Cao Y, Wang X (2016) RSC Adv 6:71461CrossRefGoogle Scholar
  66. 66.
    Teixeira EM, de Campos A, Marconcini JM, Bondancia TJ, Wood D, Klamczynski A, Mattoso LHC, Glenn GM (2014) RSC Adv 4:6616Google Scholar
  67. 67.
    Young RJ, Lovell PA (1991) Introduction to polymers, Chap. 5 2nd edn. Chapman and Hall, LondonCrossRefGoogle Scholar
  68. 68.
    Pérez E, Famá L, Pardo SG, Abad MJ, Bernal C (2012) Composites B 43:2795CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jhon Alejandro Ávila Ramírez
    • 1
    • 2
    • 3
  • Patricia Cerrutti
    • 2
    • 4
  • Celina Bernal
    • 3
    • 5
  • María Inés Errea
    • 1
  • María Laura Foresti
    • 2
    • 3
    Email author
  1. 1.Centro de Ingeniería del Medio Ambiente (CIMA)Instituto Tecnológico de Buenos Aires (ITBA)Buenos AiresArgentina
  2. 2.Grupo de Biotecnología y Biosíntesis, Facultad de IngenieríaInstituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET), Universidad de Buenos AiresBuenos AiresArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  4. 4.Departamento de Ingeniería Química, Facultad de IngenieríaUniversidad de Buenos AiresBuenos AiresArgentina
  5. 5.Grupo de Propiedades Mecánicas y Fractura, Facultad de IngenieríaInstituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET), Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations